- 1. a. Prove that a finite product of discrete spaces is discrete.
 - b. For $i \in \mathbb{N}$, let X_i be a discrete space containing more than one point. Prove that $\prod_{i=1}^{\infty} X_i$ is not discrete.
- 2. a. Prove that a subspace A of a space X is perfect if and only if A is closed and has no isolated points.
 - b. In a product space $X \times X$, the set $\{(x,x) : x \in X\}$ is called the *diagonal* of $X \times X$. Prove that a space X is Hausdorff if and only if the diagonal of $X \times X$ is a closed set in $X \times X$.
- 3. Prove that every compact perfect Hausdorff space is uncountable.
- 4. Let X be a space, Y a Hausdorff space and $f, g: X \to Y$ continuous functions. Prove:
 - a. $\{x \in X : f(x) = g(x)\}\$ is a closed subset of X.
 - b. If f and g agree on a dense subset of X, then f = g.