- 1. Let U be a nonempty open subset of \mathbb{R}^2 . Prove that U contains a point both coordinates of which are rational.
- 2. Let X be a set. The co-countable topology \mathcal{T}^* on X consists of \emptyset and all subsets O of X with $X \setminus O$ countable.
 - a. Prove that \mathcal{T}^* is a topology X.
 - b. Let $A \subseteq X$. Prove that the derived set $A' = \emptyset$ if A is countable. Also prove that A' = X if A is uncountable.
 - c. Prove that the intersection of an arbitrary countable family of elements \mathcal{T}^* again belongs to \mathcal{T}^* .
- 3. Let X be a Hausdorff space.
 - a. Prove that every finite subset F of X is closed in X.
 - b. Let $(x_n)_n$ be a sequence in X. Prove that $(x_n)_n$ has at most one limit.
- 4. a. Let A be a connected subset of a topological space X. Prove that \overline{A} is connected.
 - b. Let A be a convex subset of \mathbb{R}^2 . Prove that \overline{A} is convex.
 - c. Give an example of a space X with pathconnected subset A of which its closure \overline{A} is not pathconnected.