

Exam Logical Verification

February 8, 2006

There are six (6) exercises.

Answers may be given in Dutch or English. Good luck!

Exercise 1. This exercise is concerned with first-order minimal propositional logic and simply typed λ -calculus.

- a. Show that $(B \to (A \to B) \to C) \to B \to C$ is a tautology. (5 points)
- b. Give the type derivation in simply typed λ -calculus corresponding to the proof of 1a.

(5 points)

c. Replace in the following three terms the ?'s by simple types, such that we obtain typable λ -terms.

```
\lambda x:?. \lambda y:?. \lambda z:?. y (\lambda u:?. x)

\lambda x:?. \lambda y:?. x (x y)

\lambda x:?. \lambda y:?. \lambda z:?. z ((\lambda u:?. y) x)

(5 points)
```

Exercise 2. This exercise is concerned with inductive definitions in Coq.

a. Consider the definition of natlist for lists of natural numbers:

```
Inductive natlist : Set :=
| nil : natlist
| cons_ : nat -> natlist -> natlist.
```

Give the type of natlist_ind, which is used to give proofs by induction. (5 points)

b. Give the definition of an inductive predicate last_element such that (last n 1) means that n is the last element of 1.
(5 points)

c. What is expressed by the following predicate:

```
Inductive remove_last : nat -> natlist -> natlist -> Prop :=
| remove_last_h :
| forall n:nat, remove_last n (cons n nil) nil
| remove_last_t :
| forall (n m:nat) (k l:natlist),
| remove_last n k l -> remove_last n (cons m k) (cons m l).
(5 points)
```

(d) Give a definition of a predicate palindrome on natlists expressing that a natlist is the same as its reverse. You may use remove_last.

(5 points)

Exercise 3. This exercise is concerned with first-order predicate logic.

a. Give an example of a proof that is incorrect because the side-condition for the introduction rule for \forall is violated.

(5 points)

b. Show that $(\forall x. \neg P(x)) \rightarrow \neg(\exists x. P(x))$ is a tautology. (5 points)

Exercise 4. This exercise is concerned with dependent types. We use the following definition in Coq:

a. What is the type of natlist_dep 2?Describe the elements of natlist_dep 2.

(5 points)

b. Describe the inputs and the output of append_dep, the function that appends two dependent lists.

(5 points)

c. Suppose we want to define a function nth that takes as input a list and gives back the nth element of that list. How can dependent lists be used to avoid errors?

(5 points)

Exercise 5. This exercise is concerned with the Curry–Howard–de Bruijn isomorphism.

- a. What is the type checking problem and what is the corresponding problem in logic?
 - (5 points)
- b. What is the type of the function that can be extracted from the proof of the following theorem:

```
forall 1 : natlist,
{l' : natlist | Permutation 1 1' /\ Sorted 1'}.
(5-points)
```

Exercise 6. This exercise is concerned with second-order propositional logic and polymorphic λ -calculus (λ 2).

- a. Show that $\forall a: *. ((\forall b: *.b) \rightarrow a)$ is a tautology. (5 points)
- b. Give the $\lambda 2$ -term corresponding to the formula $\forall a: *. ((\forall b: *.b) \rightarrow a)$. (5 points)
- c. Give a $\lambda 2$ -term that is an inhabitant of the answer to 6b. (5 points)
- d. Give a $\lambda 2$ -derivation of $\vdash \Pi b: *.b: *.$ (5 points)

The final note is (the total amount of points plus 10) divided by 10.

appendix to the exam logical verification 2005 - 2006

Typing rules of the simply typed lambda calculus.

The environment is a finite set of declarations.

$$\begin{array}{c} variable & \overline{\Gamma,x:A\vdash x:A} \\ \\ \underline{\Gamma,x:A\vdash M:B} \\ \overline{\Gamma\vdash (\lambda x:A.M):A\to B} \\ \\ application & \underline{\Gamma\vdash F:A\to B} \quad \underline{\Gamma\vdash N:A} \\ \overline{\Gamma\vdash (FN):B} \end{array}$$

Typing rules in the style of pure type systems (PTSs). In these rules the variable s ranges over the set of sorts $\{*, \square\}$. The environment is a finite list of declarations.