Tentamen Toegepaste Logica

17 januari 2001

Answers may be given in Dutch or English. Good luck!

Exercise 1. This exercise is concerned with first-order minimal propositional logic and λ^{\rightarrow} (simply typed λ -calculus).

- a. Show that the formula $((A \to B \to A) \to B) \to B$ is a tautology of first-order minimal propositional logic.
 - (5 points)
- b. Give the (formal) type derivation in simply typed λ -calculus corresponding to the proof of 1a.
 - (5 points)
- c. Give a proof of the formula $A \to B \to A$ with a detour, and with all assumptions cancelled.
 - (5 points)
- d. Give the typing derivation corresponding to the proof of 1c, and reduce the term to β -normal form.
 - (5 points)

Exercise 2. This exercise is concerned with first-order minimal predicate logic and λP (λ -calculus with dependent types).

- a. Show that the formula $(\forall x.(P(x) \to \forall y.Q(y))) \to \forall z.\forall w.(P(z) \to Q(w))$ is a tautology of first-order minimal predicate logic.
 - (5 points)
- b. Give the typing derivation in λP that corresponds exactly to the proof of 2a.
 - (5 points)
- c. Assume that an algebraic term is encoded by a term in Terms in λP . Explain the encoding of formulas of first-order minimal predicate logic in λP in detail.
 - (5 points)

d. The formal typing system for λP contains the conversion rule:

$$\frac{\Gamma \vdash A : B \qquad \Gamma \vdash B' : \star / \square}{\Gamma \vdash A : B'} \qquad \text{with } B =_{\beta} B'$$

Explain why this rule is necessary.

(5 points)

Exercise 3. This exercise is concerned with second-order minimal propositional logic and $\lambda 2$ (λ -calculus with polymorphic types).

a. Give the identity function on Bool and give the polymorphic identity function in $\lambda 2$.

What is the formula in second-order minimal propositional logic corresponding to the type of the polymorphic identity?

(5 points)

b. Explain the encoding of formulas of second-order minimal propositional logic in $\lambda 2$ in detail.

(5 points)

c. Consider the two product rules of $\lambda 2$ from its formal typing system:

$$\frac{\Gamma \vdash A : \star \qquad \Gamma, x : A \vdash B : \star}{\Gamma \vdash \Pi x : A . B : \star} \qquad \frac{\Gamma \vdash A : \Box \qquad \Gamma, x : A \vdash B : \star}{\Gamma \vdash \Pi x : A . B : \star}$$

Do for each rule the following: explain briefly what it means and illustrate its use by means of an example.

(5 points)

Exercise 4. This exercise is concerned with Gödel's **T**. Besides the β -reduction rule we also use the rules for the conditional:

$$\begin{array}{ccc} \mathsf{c}(M,N,\mathsf{t}) & \to & M \\ \mathsf{c}(M,N,\mathsf{f}) & \to & N \end{array}$$

Here we take M : Bool and N : Bool and hence also $\mathsf{c}(M,N,\mathsf{t})$: Bool and $\mathsf{c}(M,N,\mathsf{f})$: Bool.

a. Let or $= \lambda x$:Bool. λy :Bool. c(t, y, x). Show that $(\text{ort } z) \rightarrow_T^* t$ (give the reduction step by step).

(5 points)

- b. Explain why the term (or zt) does *not* reduce to t. (5 points)
- c. Define a term or' such that $(\text{or'} z t) \rightarrow_T^* t$ (give the reduction step by step). (5 points)

Exercise 5.

- a. Explain briefly what proof checking is and how it works.(5 points)
- b. Coq is based on intuitionistic (also called constructive) logic. Give three different ways to extend *intuitionistic* first-order minimal propositional logic to *classical* first-order minimal propositional logic.
 (5 points)

Exercise 6. This question is concerned with inductive types.

- a. Give and explain the definition of an inductive type nat of natural numbers in Coq.
 - (5 points)
- b. Give and explain the type of the term nat_ind that is automatically generated by Coq once the inductive definition of nat is given.
 - (5 points)

Het tentamencijfer is (het totaal aantal punten plus 10) gedeeld door 10.