Exercise 1. (4+4)

Prove or disprove CR for the following two TRSs.

(a)
$$f(x,g(x)) \to f(x,x)$$

 $f(x,x) \to g(x)$

(b)
$$g(g(g(x))) \rightarrow g(x)$$

Exercise 2. (3+3+3+3)

Recall that an ARS has the *normal form property* NF if for any normal form n and every a we have $a=n\Rightarrow a \twoheadrightarrow n$. (NB: = stands for conversion.). Moreover an ARS has the *unique normal form property* UN if for normal forms a,b we have $a=b \Rightarrow a \equiv b$.

Prove or disprove the following implications:

- (a) NF \Rightarrow CR
- (b) $NF \wedge WN \Rightarrow CR$
- (c) $UN \wedge WN \Rightarrow CR$
- (d) $UN \wedge SN \Rightarrow CR$

Exercise 3. (10)

Prove SN for the TRS with two rewrite rules:

$$g(f(x), y) \rightarrow g(x, g(x, y))$$

 $f(g(x, y)) \rightarrow g(f(x), g(f(y), x))$

Exercise 4. (10 + 4 + 2)

(a) Use the Knuth–Bendix method to give a complete TRS for the following specification.

$$A(A(x)) = A(x)$$

$$B(B(A(x))) = B(x)$$

TIP: The system can be seen as a string rewriting system by dropping the brackets and the x. This may save writing.

- (b) Prove that the resulting TRS is actually complete.
- (c) Does the equation A(B(x)) = B(A(x)) hold in this specification? Motivate the answer.

Exercise 5. (4+4+4+4)

Consider the TRS with the two rewrite rules $a \to i(a)$ and $i(x) \to x$

- (a) What is the term i^{ω} ? Give an infinite reduction from a to i^{ω} of length ω .
- (b) Give also a transfinite reduction from a to i^{ω} of length $\omega + 3$.
- (c) Is there an infinite normal form n of the term a?
- (d) Can you give a reason why the TRS will be CR^{∞} ?

Exercise 6. (4+4+4+4)

This exercise is about CL.

- (a) Give a reduction of the term (IS)(IS)(IS)(IS) to normal form.
- (b) Give a complete development of the term (IS)(IS)(IS)(IS).
- (c) Give a CL-term W such that $Wxy \rightarrow x(yy)$.
- (d) Assume that N is a CL-term such that $N(xy) \rightarrow y$.
 - (i) Show that then $N(K(II)K) \rightarrow K$ and also $N(K(II)K) \rightarrow I$. (Which general property of reduction do you use here?)
 - (ii) Using (i) argue that such an N can not exist in CL.

Exercise 7. (4+4+4)

Consider the TRS

$$\begin{array}{ccc} f(x,y) & \to & g(y) \\ a & \to & h(a) \\ g(x) & \to & x \\ h & \to & c \end{array}$$

- (a) Evaluate the term g(f(a,b)) to normal form with the full-substitution strategy \mathbb{F}_{GK} .
- (b) Idem, now with the leftmost-outermost strategy \mathbb{F}_{lm} .
- (c) Show what the parallel-innermost strategy does with the term g(f(a,b)).

The result is computed as the total number of points plus 10, divided by 10.