Faculteit Wiskunde en Informatica	Exam Part I Knowledge-based Systems
Vrije Universiteit, Amsterdam	Tuesday 10th of April, 10.45 - 12.30 h

Name:

Student Number:

Assessment: 20 points for each question

Exercise 1: Basic Concepts

- **a.** Explain the difference between the **task** and the **domain** of a knowledge-based system to be designed. Give two examples that illustrate the re-use of components as a result of this distinction.
- **b.** According to Newell (1982) knowledge is whatever can be ascribed to an agent, such that its behavior can be explained in terms of the principle of rationality. What is the **principle of rationality**?

Exercise 2: Knowledge Acquisition

- a. What is participatory design?
- **b.** Name at least four **stakeholders** in the design process. What is their role in the design process? What is their primary interest?

Exercise 3: Production Rules

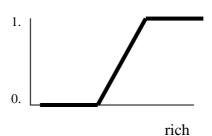
- **a.** What is **conflict resolution**? Name five conflict resolution strategies.
- **b.** One of the advantages of production rules is that they make knowledge transparent, also for the end user. Explain how you can answer so called '**How**?' and '**Why**?' questions using production rules and forward and backward chaining.

Exercise 4: Time and Space

This table lists Allen's (1984) seven relations between time intervals.

Relation	Condition	Symbol
X before Y	X+ < Y-	<
X equals Y	X - = Y -, X + = Y +	=
X meets Y	X+=Y-	m
X overlaps Y	X - < Y -, X + > Y -, X + < Y +	0
X during Y	(X-< Y-, X+=< Y+) OR	d
	(X->=Y-,X+< Y+)	
X starts Y	X - = Y -, X + < Y +	S
X finishes Y	X+=Y+, X-< Y-	f

Table 1: Allen's seven interval relations


Allen's time reasoning makes use of a **composition table**, which allows two relations $R \subseteq A \times B$ and $S \subseteq B \times C$ to be combined into a new relation $R \circ S$ based on the available information. A part of the composition table is given here.

$\mathbf{R} \setminus \mathbf{S}$	<	>	d	m
<	<		<, o, m, d, s	
>	any	>	•••	
d	<			<, m
m				

- **a.** Complete the missing parts of the table, in place of the '...'.
- **b.** What is the difference between the concepts **linear time** and **branching time**? Which concept of time would you select for building a 'surveillance robot'?

Exercise 5: Uncertainty and Vagueness

- **a.** A doctor knows that the illness `meningitis' (M) causes a stiff neck (S) in 50% of the cases. The chance that a patient will get meningitis anyway is 1 out of 50.000. The chance that a patient will get a stiff neck is estimated at 1 out of 20. Determine the **conditional probability** that a patient has meningitis, given that she has a stiff neck.
- **b.** Given is the following 'fuzzy' definition of the concept 'rich'. Show in the drawing how you could express the notion of 'a little rich', using a so-called **'hedge'**.

