Exam Stochastic Processes

september 28, 2005

- 1. Let W_t be standard Brownian motion and let T > 0 be a constant.
- (a) Prove the reflection principle, that is, prove that \tilde{W}_t defined by

$$\tilde{W}_t = \left\{ \begin{array}{ll} W_t & \text{for } t \le T \\ 2W_T - W_t & \text{for } t > T, \end{array} \right.$$

is also a standard Brownian motion.

- (b) Explain in words why we can replace the time T in (a) by a stopping time.
- (c) Show that $\tau_a = \inf\{t \geq 0; W_t = a\}$ is a stopping time.
- (d) Show that

$$P(W_t \ge x) = 1 - \Phi\left(\frac{x}{\sqrt{t}}\right),\,$$

where Φ denotes the distribution function of the standard normal distribution

Now let a > x > 0 and $M_t = \max_{0 \le s \le t} W_t$.

(e) Show that, using (b) with stopping time τ_a , that

$$P(M_t \ge a, W_t \le x) = 1 - \Phi\left(\frac{2a - x}{\sqrt{t}}\right).$$

2. Consider the unit interval I = [0, 1], equipped with the usual sigma-algebra and Lebesgue measure. Let f be an integrable function on I. Let, for $n = 1, 2, \ldots$

$$f_n(x) = 2^n \int_{(k-1)2^{-n}}^{k2^{-n}} f(y)dy$$
, for $(k-1)2^{-n} \le x < k2^{-n}$,

and define $f_n(1) = 1$. (The value of $f_n(1)$ is not important.) Finally, we define \mathcal{F}_n as the sigma algebra generated by intervals of the form $[(k-1)2^{-n}, k2^{-n}), 1 \leq k < 2^n$.

- (a) Argue that \mathcal{F}_n is an increasing sequence of sigma-algebra's.
- (b) Show that (f_n) is a martingale.
- (c) Use Lévy's Upward Theorem to prove that as $n \to \infty$, $f_n \to f$, almost surely and in L_1 .

3. Let X_1, X_2, \ldots, X_n be independent uniform [0, 1] distributed random variables. We denote by $\mathbf{1}_A$ the indicater function of the event A, that is, $\mathbf{1}_A = 1$ if A occurs and 0 otherwise. For $0 \le t < 1$, define

$$G_n(t) = n^{-1} \sum_{k=1}^n \mathbf{1}_{\{X_k \le t\}},$$

in words; $G_n(t)$ is the fraction of the X_k 's that has value at most t. We denote by $G_n(t)$ the sigma-algebra $\sigma(G_n(s); s \leq t)$.

(a) Explain why for $0 \le t < u \le 1$ we have

$$E(G_n(u)|\mathcal{G}_n(t)) = G_n(t) + [1 - G_n(t)] \frac{u - t}{1 - t}.$$

(b) Use (a) to show that

$$M_n(t) = \frac{G_n(t) - t}{1 - t}$$

is a continuous-time martingale with respect to $\{\mathcal{G}_n(t)\}$.

- (c) Is $M_n(t)$ a uniform integrable martingale? (Hint: observe that $M_n(t)$ will be 1 for t close to 1.)
- **4.** Let X_t be a continuous time Markov process on \mathbb{Z} with the following transition rates: $q_{0,1} = \gamma$; for $i \geq 1$ we have $q_{i,i+1} = \lambda$ and $q_{i,i-1} = \mu$, with $\lambda + \mu = 1$ and $\mu > \lambda$.
- (a) Write down the jump matrix of X_t . Why is this jump matrix independent of γ ?

Denote the jump chain by X_0, X_1, \ldots , that is, X_n is the position after n jumps. Define

$$Y_n = \left(\frac{\mu}{\lambda}\right)^{X_n}$$

and $\tau_i = \min_n \{X_n = i\}.$

- (b) We start the process at a point m > 0. Show that $Y_n^{\tau_0}$, that is, the Y_n process stopped at 0, is a martingale.
- (c) Now start the process at a point m satisfying 0 < m < N. Use the optional stopping theorem (verify the conditions!) to calculate the probability that the process hits N before it hits 0.
- **5.** Suppose that $\Omega = \{+1, -1\}$, and that P is a probability measure with $P(\{+1\}) = P(\{-1\}) = 1/2$. Let $\mathcal{G}_t = \{\emptyset, \Omega\}$ when $t \leq 1$ and $\mathcal{G}_t = \{\emptyset, \Omega, \{+1\}, \{-1\}\}$ when t > 1. Finally we define, for $\omega \in \Omega$,

$$Y_t(\omega) = \left\{ egin{array}{ll} 0 & ext{if } t \leq 1, \\ \omega & ext{if } t > 1. \end{array} \right.$$

(a) Show that (Y_t) is a martingale with respect to $\{\mathcal{G}_t\}$.

- We define $X_t(\omega) = \lim_{s \downarrow t} Y_s(\omega)$. (b) Show that (X_t) is not a martingale with respect to $\{\mathcal{G}_t\}$. (c) Show that (X_t) is not a modification of (Y_t) .

(A)