Exam Stochastic Processes

july 4 2005, 14.00-17.00

1. Let $(W_t)_{t\geq 0}$ be a standard Brownian motion with respect to its own filtration \mathcal{F}_t , and define, for a>0,

$$S_a = \inf\{t \ge 0; W_t > a\}.$$

(a) Is S_a an optional time? Justify your answer.

Next we define T_a as the first time that W_t hits a, that is,

$$T_a = \inf\{t \ge 0; W_t = a\}.$$

Finally, let M_a be the *last* time that W_t is equal to at, that is,

$$M_a = \sup\{t \ge 0; W_t = at\}.$$

- (b) Is T_a a stopping time? Is M_a a stopping time? Show that $M_a < \infty$ with probability one. (For this and the following question, you could use the fact that $tW_{1/t}$ is again a standard Brownian motion.)
- (c) Show that M_a has the same distribution as $1/T_a$.
- (d) Explain why the fact that $E(W_{T_a}|\mathcal{F}_0) \neq W_0$ does not contradict the optional stopping theorem.
- 2. Let $(M_t)_{0 \le t \le \infty}$ be a stochastic process on a probability space (Ω, \mathcal{F}, P) , adapted to the filtration \mathcal{F}_t . We do not assume that M_t is a martingale. Assume that for any finite or infinite stopping time S, we have $E(|M_S|) < \infty$ and $E(M_S) = 0$. For $t \ge 0$ and $F \in \mathcal{F}_t$, we define $T(\omega) = t$ if $\omega \in F$, and $T(\omega) = \infty$ if $\omega \notin F$.
- (a) Show that T is a stopping time.
- (b) Show that

$$\int_{F} M_t dP + \int_{F^c} M_{\infty} dP = 0$$

and

$$\int_{F} M_{\infty} dP + \int_{F^{c}} M_{\infty} dP = 0,$$

where F^c denotes the complement of F.

(c) Deduce from (b) that

$$\int_F M_{\infty} dP = \int_F M_t dP.$$

(d) Deduce from (c) that $M_t = E(M_{\infty}|\mathcal{F}_t)$.

(e) Deduce from (d) and some results we have proved in class, that M_t is a uniformly integrable martingale. (Make sure that by now you have used all assumptions mentioned in this exercise.)

3. Consider a shop with one server. Customers arrive at the shop with rate $\lambda > 0$, that is, the time intervals between two arrivals are independent random variables with an exponential distribution with parameter λ . It takes an exponential amount of time (with parameter μ) to serve a customer, and these service times are independent of each other. The customers are served one by one in the order of arrival.

(a) Model this as a continuous time Markov process $(X_t)_{t\geq 0}$, where X_t represents the number of customers in the shop, and write down the Q-matrix.

(b) Show that

$$\pi_i = \left(\frac{\lambda}{\mu}\right)^i, \quad i = 0, 1, \dots$$

is an invariant measure.

(c) Assume now that $\lambda < \mu$ and derive the invariant probability distribution for X_t .

(d) Explain why it is reasonable to have an invariant probability distribution for $\lambda < \mu$ but not for $\lambda > \mu$. What would happen when $\lambda > \mu$?

4. Consider modelling a sequence of gambling games by the following procedure. Let $M_n - M_{n-1}$ denotes the net winning per unit bet on game n, $n = 1, 2, \ldots$; this 'winning' can be negative of course. Let C_n be the amount you bet on game n. So the net winning on game n is $C_n(M_n - M_{n-1})$, and the total net winning up to game N is given by

$$(C \cdot M)_N = \sum_{n=1}^{N} C_n (M_n - M_{n-1}).$$

(a) Explain why C_n should be predictable and why M_n should be a martingale to define a reasonable model for a series of fair gambling games.

Now we become more specific. Consider a monkey that types a capital letter at random, at each of times $1, 2, \ldots$ Each letter of the 26 letters has the same probability, and different letters are independent of each other. Just before time $n = 1, 2, \ldots$, a new gambler arrives and bets 1 that the next letter (i.e. the n-th letter) is an A. If he loses he leaves the game, if

he wins, he gains 26 and bets all this on the event that the next letter is a B. This is repeated throughout the sequence ABRACADABRA. (Hence if the gambler wins the second time as well, his third bet is on the letter R, etcetera.) In questions (b)-(d) below we consider the first gambler.

(b) Show that the game the first gambler plays, can be formulated in the framework described at the beginning of this exercise, where $M_n - M_{n-1} = 25$ with probability 1/26; $M_n - M_{n-1} = -1$ with probability 25/26, and

$$C_n = 26^{n-1}$$

if the gambler is still in the game at time n, and $C_n = 0$ otherwise. (c) Show that $(C \cdot M)_n = 26^n - 1$ if the gambler is successful up to the n-th game, and $(C \cdot M)_n = -1$ otherwise.

Now let T be the first time that the monkey has typed ABRACADABRA. We are interested in the value of E(T).

- (d) Explain why $E(C \cdot M)_T = 0$.
- (e) Show now, using (c) and (d), that $E(T) = 26^{11} + 26^4 + 26$ by combining all gamblers up to time T. (First figure out which gamblers are still in the game after the T-th gamble.)