Exam Stochastic Processes

june 13, 2005, 14.00-17.00

1. Let W; (t > 0) be Brownian motion, and define
Xt = Wt -+ Ct,

for some constant ¢. The process X; is called Brownian motion with drift.
Fix some A > 0.

(a) Show that
M, = fXe2t

is a martingale (with respect to the usual filtration) if and only if § =
Ve +2X —cor § = —v/c2 + 2\ — ¢. You can use the fact that

eaWt — %a?t

is a martingale for every real a.

Now let > 0 and define H, = inf{t > 0; X; = z}.
(b) Argue that H, is a stopping time.
(c) Use the optional stopping theorem (verify all necessary conditions) to

show that
E (e~)\Hm) — e—w(\/c2+2z\—c).

(d) Use this to prove that
P(H, < o0) =1 for ¢ > 0,

and
P(H, < 00) = e~ 2% for ¢ < 0.

(e) Explain why this result is reasonable.

2. Suppose that Y1,Ys,... are independent, positive random variables and
that E(Y,) =1for all n. Let X, =Y7-Ys---Y,,.

(a) Show that (X,) is a martingale and that X,, converges with probability
1 to an integrable random variable X, as n — oco. (Hint: use the strong law
of large numbers.) ;

(b) Suppose specifically that Y, assumes the values % and % with probability
% each. Show that in this case X = 0 with probability 1.

(c) Is the martingale (X,) in (b) uniformly integrable? Why (not)?



3. Consider Brownian motion W, defined on some probability space (€2, F, P)
and consider the martingale

My (t) = Wi-bat

for a € R. We denote by F;, the sigma-algebra generated by W;, ¢ < s.
(a) Explain why ) '

/Ma(s)dP=/Ma(t)dP, for s<t, A€eF,.
A A

(b) Differentiate the integral identity in (a) up to four times, and use the
result to prove that
W2 -t

and
Wi — 6tW2 + 3¢

are martingales. (The first of these was already shown to be a martingale
in the lectures, by direct computation.)
(c) Show that for every bounded stopping time 7, we have E(r) = E(W?2).

4. Consider a continuous time Markov process X; on a countable state space
I and with @Q-matrix Q = (g; ;). Let v be a measure on I.

(a) Show that when v;q;; = v;q;; for all 4,5 € I (i # 5), then v is invariant
for X;.

Consider now the Markov process X; with state space Z and Q-matrix given
by
Gii+1 = Ag; and g1 = pg;,

and with g; ; = 0 for all other ¢ and j. Here, A and p are positive constants.
(b) Show that .
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is invariant for X;. )
(c) Show that there is no stationary probability distribution for X; when
the ¢;’s are constant.
(d) How would the answer to (c) change if the state space would be restricted
to the positive integers?

(e) Suppose now that A = p. For which g;’s are there stationary probability
distributions? Motivate your answer.




5. Consider Brownian motion W;. Inrthis exercise we are interested in
those points ¢ of time for which W; = 0. To this end, we assume that W; is
defined on some probability space (€2, F, P), and we write Z = Z(w) for the
set {t > 0; Wi(w) = 0}. Lebesgue measure is denoted by u.

(a) Show (by interchanging the order of integration) that

/ W(Z(w))dP(w) =0,
Q

and argue from this that Z a.s. has Lebesgue measure zero.

We are now going to show that each point in Z(w) is the limit point of other
points of Z(w). For this, we use the strong Markov property for Brownian
motion, a result which we have not proved in the lectures.

(b) Formulate the strong Markov property for Brownian motion. (You are
not asked to prove this.)

(c) Show that for every r > 0,

Tr(w) = inf{¢;t > r, Wy(w) = 0}

is a finite stopping time. ‘

(d) Show, using the strong Markov property, that for each r, the same holds
a.s. for the first zero of the Brownian motion following r. (You can use the
fact, proved in class, that 0 € Z(w) is the limit point of other points of
Z(w).

(e) Show that with probability 1, any point in Z(w) is the limit point of
other points in Z(w).






