

Exam caput Stochastic Optimization 20 January 2006, duration: 2 hours

This exam consists of 3 problems, each consisting of several questions. All answers should be motivated, including calculations, formulas used, etc. The minimal note is 1. All questions are worth 3 points.

Question 1

Consider a semi-Markov process with $\mathcal{X} = \{1, 2, 3\}$. T(x) has a uniform distribution on [0, x] for all $x \in \mathcal{X}$. p(x, y) = 1/2 for all $x \neq y$, $x, y \in \mathcal{X}$.

- a. List and check for this process the conditions under which the embedded chain has a limiting distribution.
- b. Calculate this distribution (π_* in the lecture notes).
- c. Use the answer found under b to calculate the time-limiting distribution (ν_* in the lecture notes).

Ouestion 2

Consider a Markov process consisting of 4 states: $\mathcal{X} = \{0, 1, 2, 3\}$. The following transition rates are positive: $\lambda(x, x + 1) = 1$ for x = 0, 1, 2, and $\lambda(x, x - 1) = 1$ for x = 1, 2, 3. There are rate costs $c_r(x) = \max\{0, x - 1\}$ in state $x, x \in \mathcal{X}$.

a. Formulate the Poisson equations for this system and solve it.

Now we introduce actions, $A = \{0, 1\}$: $\lambda(x, 0, x + 1) = \lambda(x, 1, x) = 1$ for x = 0, 1, 2, and $\lambda(x, 0, x - 1) = \lambda(x, 1, x - 1) = 1$ for x = 1, 2, 3. There are rate costs $c_r(x, 0) = c_r(x, 1) = \max\{0, x - 1\}$ in state $x \in \mathcal{X}$, and lump costs $c_l(x, 1) = 0.5$ in state $x \in \{0, 1, 2\}$.

- b. Formulate the Poisson equations.
- c. Solve it using policy iteration starting with the initial policy that takes action 0 in every state. Give the optimal policy.

Ouestion 3

Consider a Markov decision process with Poisson arrivals and N servers, server i having service rate $\mu(i)$, $\mu(1) \ge \cdots \ge \mu(N)$. Every arriving customer has to be assigned to an idle server, when all servers are busy the arriving customer is lost. The objective is to minimize the long-run average number of customers in the system.

- a. Formulate the backward recursion equation of this problem.
- b. Show with induction to the time parameter of the value function that the policy that assigns to the fastest available server is optimal.