
Vr i j e Uni ver s i t ei t , Depar t ment of Comput er Sci ence

Exami nat i on paper f or Software Testing
15 June 2007 12: 00- 14: 45

Solutions

Thi s i s a c l osed book wr i t t en exam.

No pr i nt ed mat er i al or el ect r oni c devi ces ar e admi t t ed f or use dur i ng t he exam.

The answer s have t o be gi ven i n Engl i sh or Dut ch.

Bot h homewor k and exam ar e compul sor y and gr aded on a 1 t o 10 scal e.

The exam gr ade i s cal cul at ed as (Q1+Q2+…+Q5+10) / 10.

The f i nal gr ade i s cal cul at ed as 0. 4* homewor k + 0. 6* exam

A pass i s gi ven i f bot h component s as wel l as t he f i nal gr ade ar e >= 5. 5.

Q1 Q2 Q3 Q4 Q5 ΣΣΣΣQi Maximum
credits=
(ΣΣΣΣQi+10)/10

a) 3 5 3
b) 3 5 2
c) 3 5 10
d) 3 5 5
e) 3 10
Total 15 20 15 30 10 90 10

Q1 [15p] Define the following terms and in each case give an example.

 a) The bug life cycle [3p]
b) On/Off point in domain testing [3p]
c) Equivalent mutant [3p]
d) Software reliability models [3p]
e) Definition-clear path [3p]

a) The bug life cycle is a standardized sequence of states a bug follows during the

software testing process. A bug (or fault) is first discovered by the tester and it
gets the status OPEN. The bug is assigned to the programmer. When the
programmer fixes the bug, the bug gets in the RESOLVED state. The tester
conforms that the bug is fixed and the bug gets the status CLOSED.

b) Domain testing deals with domains and their borders. An ON point is a point on
the border, an OFF point is not on the border. Where exactly the OFF point is
related to the domain depends on the type of the border. The rule is COOOOI
(closed off is outside, open off is inside). If the border is closed, the OFF point is
outside the domain, if the border is open, the OFF point is inside the domain. For
example, for a domain defined as y< 4. The border is open, an OFF point is
inside the domain and can be y = 3. An ON point is y=4.

c) An equivalent mutant is a mutant that has the same functionality as the original
program. For example: x=x+2 and its mutant x*2 cannot be distinguished
semantically and offer the same functionality.

d) A software reliability model is a representation of the random process through
which software reliability is characterized as a function of time and properties of
the software product or its development process. There are more than 200 SRM,
for example, Rayleigh model, exponential model, reliability growth model.

e) Definition-clear path = a path in the data flow graph between a definition and use
of a variable without any other definition occurrence of the same variable

Q2 [20p]

a) Define verification and validation and explain their place in the testing process V-
model. [5p]

b) Define statement and decision coverage test adequacy criteria. Give an example of
fault that cannot be detected by 100% statement coverage testing. [5 p]

c) Explain shortly the state transition diagram testing method. Give an example of a state
transition diagram and show its recommended test cases. [5 p]

d) Describe the inspection process and the resulting documents. [5p]

a) Verification=evaluates a component or system to determine whether the products
of a given development phase satisfy the conditions imposed at the start of each
phase. Answers the question: Are we building the system right?

b) Validation=process of evaluating a system or component during or at the end of
development process to determine whether it satisfies specified requirements
(IEEE/ANSI). Answers the question: Are we building the right system?

Q3. Black-box testing [15p]

Consider the following scenario used by a marketing company to test its products on the
market:

The customers are treated according to 3 characteristics: Gender
(male/female), City Dweller (Y/N) and Age group: A (young-under
30), B (middle-aged, between 30 and 60) and C (old, over 60.

The company has 4 products (W, X, Y and Z) to test on the market.
Product W will appeal to female city dwellers. Product X will
appeal to young females. Product Y will appeal to male middle-
aged shoppers who do not live in cities. Product Z will appeal to
all clients except older females.

Suggest a black-box procedure to test the software module used to decide which
products should be evaluated by each customer. Argument your choice and generate
the test cases.

This is a case where many business rules are described. The most adequate black-box
testing technique in this case is decision table testing. The conditions are the customer
characteristics: gender, city dweller and age group and the actions are the products to
be evaluated.
The maximum nr. of rules and thus of test cases: 2x2x3 = 12

Each column in the decision table is a test case. For example:

Test case 1: Inputs: Female, city dweller, young Output: Product W, Product X and
product Z.

Pairwise testing can also be used n order to reduce the number of test cases.an option.

The decision table.

 1 2 3 4 5 6 7 8 9 10 11 12
Conditions
Gender F M F M F M F M F M F M
City
Dweller

Y Y N N Y Y N N Y Y N N

Age A A A A B B B B C C C C

Actions
Product W x x x
Product X x x
Product Y x
Product Z X x x x x x x x x x x

Q4. White-Box testing [30p]

Consider this Java implementation of the triangle problem.

 public class Triangle {

static int INVALID_TRIANGLE = 1 ;
static int SCALENE_TRIANGLE = 2;
static int ISOSCELES_TRIANGLE = 3 ;
static int EQUILATERAL_TRIANGLE = 4 ;

[A] public static int get_Type(int a, int b, int c)

{
 int type;
[B] if (a>b)
[C] {int t = a; a = b; b = t;}
[D] if (a>c)
[E] {int t = a; a = c;c = t;}
[F] if (b>c)
[G] {int t = b;b = c;c = t;}

[H] if (a+b <= c)
[I] type= INVALID_TRIANGLE;
 else {
[J] type = SCALENE_TRIANGLE;
[K] if (a ==b && b==c)
[L] type = EQUILATERAL_TRIANGLE;
[M] else if (a==b || b==c)
[N] type = ISOSCELES_TRIANGLE;
 }

[O] return (type);
}

}

a) [3p] Draw a control flow-graph for the above module
b) [2p] Determine the McCabe complexity
c) [10p] Prepare suitable test cases using the basis-path testing technique.

d) [5p] Implement these test cases in a unit test for JUnit frameworks.

e) [10p] Generate 3 mutants of this Java class. Test these mutants with the test suite
from section c). Which of the mutants will stay alive? What can you say about the quality
of your test suite?

McCabe complexity C = E-N+2 = 20-15+2 = 7.

Basis path testing needs 7 independent paths.

Choose as basis path the most common path

Take care that some paths are not feasible. Like A-B-D-E-F-H-J-K-M-O a < b, a>c
swap a with c, b<c.

Test
case

Path

Inputs Expected outputs

1 A-B-D-F-H-J-K-M-O a <=b, a <=c, b <=c
a= 3 b=8 c=10

scalene

2 A-B-C-D-F-H-J-K-M-O a>b , swap a and b,
a <= c, b<=c
a = 8, b=3, c=10

scalene

3 A-B-C-D-E-F-G-H-J-K-M-O a< b,
a > c, swap a and c,
b > c , swap b and c
a=7 b=10 c = 5

Scalene

4 A-B-D-F-G-H-J-K-M-O a<b, a<c,
b>c swap b and c
a=5 b=10 c=7

Scalene

5. A-B-D-F-H-I-O a <=b, a <=c, b <=c
a= 3 b=4 c=100

Invalid

6 A-B-D-F-H-J-K-L-O a=b a=c b=c
a=b=c=5

Equilateral

7 A-B-D-F-H-J-K-M-N-O a=b, a<=c, b<=c
a=5, b=5, c=7

isosceles

Junit tests:

package triangle;

import junit.framework.TestCase;

public class TriangleTest extends TestCase {
 static int INVALID_TRIANGLE = 1 ;
 static int SCALENE_TRIANGLE = 2;
 static int ISOSCELES_TRIANGLE = 3 ;
 static int EQUILATERAL_TRIANGLE = 4 ;

 public void testType () {
 assertEquals(SCALENE_TRIANGLE, Triangle.get_Type (3,8,10));
//Test case 1

assertEquals(SCALENE_TRIANGLE,Triangle.get_Type(8,3,10));
// Test case 2
 assertEquals(SCALENE_TRIANGLE, Triangle.get_Type (7,10,5));
// Test case 3
 assertEquals(SCALENE_TRIANGLE,Triangle.get_Type(5,10,7));
// Test case 4
 assertEquals(INVALID_TRIANGLE,Triangle.get_Type(3,4,100));
// Test case 5
 assertEquals(EQUILATERAL_TRIANGLE, Triangle.get_Type (5,5,5));
// Test case 6
 assertEquals(ISOSCELES_TRIANGLE,Triangle.get_Type(5,5,7));
// Test case 7

 }
}

