Problem 1.

A switch has been a very long time in the position S_2 . At a certain moment the switch is brought into the position S_1 .

- a. Derive the expression of the current through the capacitor C_1 as function of time
- b. Derive the expression for the voltage across the capacitor C2 as function of time.

Problem 2.

An infinite long cylinder along the x-axis with radius R has a charge density, that is given by $\rho(r)=2r$, where r is the distance to the x-axis.

- a. What is the electric field as function of r in the cylinder (use $\kappa \epsilon_0 = 1$)?
- b. What is the electric field as function of r outside the cylinder?
- c. Make a drawing on the graph paper of the electric field as function of r.

Problem 3.

Suppose that the heart of a patient shows an aberrant electrical activation which is characterized by the fact that the depolarisation of the ventricles alternatively is described by the vector loops L_1 and L_2 (e.g. in the first beat L_1 is followed, the second beat L_2 , the third L_1 , the forth L_2 etc.). (The disease ventricular bigemeny looks like this example).

In the figure L_1 and L_2 are plotted during depolarisation of the ventricles. Also are plotted leads I, II and III. Suppose ABC is a triangle with three equal sides. Each dashed line segment indicates the same time interval.

a. Draw the ECG, measured in lead I during two cardiac cycles. (the depolarisation of the atria are omitted)

Motivate is all cases your answer.

Problem 4.

A pacemaker of a patient can deliver a stimulation pulse of which pulse duration and pulse strength can be adjusted externally after implantation. The chronaxy-rheobase curve of the patient is established experimentally and can be expressed as:

$$i(t) = i_R (1 + t_c/t)$$
, with i_R : rheobase, t_c : chronaxy and t: the pulse duration

To stimulate the heart of the patient with a pulse of 0,5 ms, a current of 4,1 mA is minimally needed; to stimulate the heart with a pulse of 1 ms, a current of 2,1 mA is minimally needed.

- a. What is the value of the rheobase?
- b. What is the value of the chronaxy?

Problem 5.

An electronic circuit consists of two coils, fixed to each other (see figure). The left coil (in the XZ-plane) has a circular winding with radius r_1 ; the right coil (in the XY-plane) has a circular winding with radius r_2 (> r_1). Through the coils a current i is floating as indicated. At a certain moment a magnetic field **B** in the direction of the positive Z-axis is switched on. The circuit can only rotate about the x axis.

- a. What are the magnetic moments of the left resp. the right coil (give sizes and directions)?
- b. How will the circuit orient itself on the magnetic field in equilibrium?

Problem 6.

A piece of homogeneous tissue is magnetized by a magnetic field $B(t) = B_0 (1+\sin(2\pi t))$ along the positive Z-axis. The magnetization vector is M. At this field strength saturation is still not reached.

a. Make a drawing of the magnetization vector in space for 2 seconds.

Motivate in all situations your answer

Naam: stud. nr.