
Parallel Programming for High-Performance Applications

23 October 2014

Department of Computer Science, Faculty of Sciences

The exam has 9 questions. Your answers should be to the point: address the
questions and omit information that is not asked for. The grading system
is shown after the last question.

1. Given below is a sequential algorithm that makes a fixed number of
sweeps over an N-by-M array and during each sweep updates elements:

float G[1:N, 1:M], G2[1:N, 1:M];

for (step = 0; step < NSTEPS; step++) {

for (i = 3; i < N-1; i++) {

for (j = 3; j < M-1; j++) {

G2[i,j] =

weight * (G[i,j] + G[i-1,j] + G[i-2,j] + G[i+1,j] + G[i+2,j]

+ G[i,j-1] + G[i,j-2] + G[i,j+1] + G[i, j+2]) / 9;

}

}

G = G2;

}

What is the communication scheme if this algorithm is parallelized by
partitioning the array row-wise over P processors (i.e., giving each pro-
cessor N/P consecutive rows)? Make clear which data the processors
will exchange. (You may assume that N is a multiple of P.)

2. (a) What is a “fat tree” topology? What problem of normal (non-fat)
tree topologies does it try to solve?

(b) What is a NUMA architecture? Can it be programmed just like
a normal shared-memory machine?

1



3. Consider a parallel master/slave program in which each slave process
gets a large piece of work, executes it, and then terminates. This
program has to be extended with the capability to terminate (kill)
slave processes prematurely. In the extended program, the master
process should be able to send a termination message to all other
processes (the slaves). Each slave process should terminate as soon
as possible when a termination message arrives (e.g., by invoking the
’exit’ system call). The termination messages may arrive at any point
in time during the execution of the slaves, making it somewhat difficult
to receive and handle such incoming messages.

(a) How would you implement the receipt of such termination mes-
sages if the program is written in SR?

(b) How would you implement the receipt of such termination mes-
sages if the program is written in MPI?

Your code need not be syntactically correct MPI or SR; however, ex-
plain clearly how you benefit from the primitives that MPI and SR
provide.

4. A major problem with asynchronous message passing is the possibility
of buffer overflows at the receiving machine. Is it also possible to get
such buffer overflows with RMI (Remote Method Invocation) in Java?
Explain your answer, and take into account that Java also supports
multi-threading.

5. (a) What are the most important advantages of HPF (High Perfor-
mance Fortran) over message-passing systems?

(b) What is the most important disadvantage of HPF compared to
message-passing systems?

6. Parallel search algorithms like IDA* typically use shared transposi-
tion tables. One approach to implement such tables on a distributed-
memory system is to replicate the tables on all processors, so lookups
can be done locally, without any communication. Explain why the
Transposition Driven Scheduling (TDS) algorithm still is much more
efficient than replicated tables, especially for large numbers of proces-
sors. What are the main advantages of TDS over replicated tables?

2



7. Both branch-and-bound (as used, for example, for the Traveling Sales-
man Problem) and Barnes-Hut (used for N-body problems) use tech-
niques to cut-off (prune) part of the computations. Parallel branch-
and-bound algorithms can sometimes obtain superlinear speedups, be-
cause the parallel version may (for certain input problems) perform
less work than a sequential algorithm. Can the parallel Barnes-Hut
algorithm also obtain superlinear speedups in this way? Explain your
answer.

8. Please provide short answers to the following questions:

(a) Explain how all threads of an NVIDIA GPU grid can be synchro-
nized.

(b) Give examples of two differences between the shared and global
memory in an NVIDIA GPU.

(c) Explain the difference between shared memory and the L1 cache
in an NVIDIA GPU.

(d) What is memory coalescing? Why is it important? Give an
example (using pseudocode) of a GPU kernel that leads to perfect
memory coalescing and another example of a kernel that leads to
imperfect or no memory coalescing.

(e) Give an example of an application (and pseudocode) as a use-
case for a global atomic operation. Explain what would happen
without the atomic operation.

9. (a) What are the best and the worst case performance for a GPU
when executing the following kernel code? Assume the execution
of one operation (any of the lines 1,2,3,4,6,7,9) is T cycles and
the code runs in a single block of 32 threads (one warp). Justify
your answer.

1. i = my_thread_id();

2. for (j=0; j<5; j++) {

3. if (a[i] % 2 == 0)

4. a[i] = a[i]+2;

5. else

6. if (a[i] % 5 == 0)

7. a[i] = a[i] * 2;

8. else

9. a[i] = a[i] * 4;}

3



(b) Explain the steps required for vectorizing this code for a 4-way
SIMD processor and give a pseudocode solution for this vector-
ization. What is the maximum performance improvement you
expect from this vectorization and why?

for (i=0; i<N; i++) {

for (j=0; j<4; j++) {

a[i] = a[i] * 2;

}

b[i]=a[i]-1;

}

The instructions you may use are vload, vstore (for loading and
storing data from arrays a and b into SIMD vectors), vset (to set
scalar values in an SIMD vector) and vsub, vmul (for SIMD arith-
metic operations). Their syntax is not relevant for this problem
- choose whatever is convenient.

Points

1 2a 2b 3a 3b 4 5a 5b 6 7 8a 8b 8c 8d 8e 9a 9b

10 5 5 5 5 5 5 5 10 10 3 3 3 3 3 5 5

Total: 90 (+ 10 = 100)

4


