Parallel Programming for High-Performance Applications
16 January 2014
Department of Computer Science, Faculty of Sciences

The exam has 8 questions. Your answers should be to the point: address the
questions and omit information that is not asked for. The grading system
is shown after the last question.

1. (a)
(b)

What is Moore’s law (from 1975)7

Someone claims that Moore’s law currently no longer holds be-
cause of the "power wall”. Comment on whether this claim is
true or false.

Explain what a hypercube topology is. What are the diameter
and bisection width of a hypercube with dimension N? (Give
formula’s.)

What is the main disadvantage of the hypercube topology?

) How is the efficiency of a parallel program defined?

Compute the efficiency of a parallel bubble sort algorithm (with
O(N?) execution time) relative to a sequential quicksort algo-
rithm (which has O(N log N) execution time), assuming that the
bubble sort algorithm scales perfectly well with the number of
Processors.

4. There are many different load balancing methods, such as:

block-wise partitioning of arrays (used in All-pairs Shortest Paths
and Successive OverRelaxation);

cyclic partitioning of arrays (used in Gaussian elimination);

the replicated workers model (used in the Traveling Salesman
Problem);

application-specific methods (e.g., Costzones in Barnes-Hut).

Describe for each method for which types of parallel algorithms it is
effective. In particular, describe the assumptions that the different
methods make about the algorithms for which they can be used effi-
ciently.

5. A problem with asynchronous message passing is that the buffer space
for storing outgoing messages is finite, so the sender may have to wait
if the buffer space fills up. This is confusing to programmers, who
assume that asynchronous sends continue immediately.

(a) Give a simple example (in pseudo code) of a program that would
work correctly with unlimited buffer space but that deadlocks
with limited buffer space.

(b) How does MPI deal with this problem?

6. Consider the following HPF program fragment

IHPF$ PROCESSORS pr(3)

integer A(8), C(8)

IHPF$ DISTRIBUTE A(BLOCK) ONTO pr
IHPF$ DISTRIBUTE C(CYCLIC) ONTO pr

FORALL (i=1,7) A(i) = C(i+1)

(a) Explain what the DISTRIBUTE directive does.

(b) Explain how many (and which) messages will be generated for
the FORALL statement.

For clarity: the FORALL statement is equivalent to the C statement
for (i = 1; i < 8; i++) A[i] = C[i+1]

7. The parallel Barnes-Hut algorithm for hierarchical N-body problems
tries to improve the data locality of the parallel program.

(a) Explain why this is important and how the costzone algorithm
manages to improve data locality.

(b) Why is it a bad idea to improve data locality by simply assigning
each processor an equal part of the physical space?

8. A complex number ’a’ consists of a real part (a.re) and an imaginary
part (a.im). The product of two complex numbers ’a’ and ’b’ is:

(a.re + a.im*i) * (b.re + b.imx*i) =
(a.rexb.re - a.im*b.im) + (a.rexb.im + a.im*b.re)*i

(where i is the square root of -1).

A and B are two arrays storing complex numbers: A[2*j],B[2*j] store
the real parts and A[2*j+1],B[2*j41] store the imaginary parts.

(a) Give a pseudocode example for element-wise multiplication of
arrays A and B into array C using a vectorized loop, where the
complex numbers at identical positions are multiplied. (Focus on
the vectorization, the rest of the code is less important.)

(b) Give a pseudocode example for element-wise multiplication of
arrays A and B using a CUDA kernel and its invocation. You
may assume that the data is already loaded in the global memory
of the GPU.

Some useful notes on vector instructions:

Assume the length of the vectors is 4 (the machine is 4-way SIMD),
and the length of the arrays is N, a multiple of 4. The elements of
vectors can be accessed with vec.w, vec.x, vec.y, vec.z

'vecl=load(a)’ and ’store(a,vecl)’ are instructions for loading data
from array a to vector vecl and storing data from vecl into a.

'vec3=add(vecl,vec2)’, 'vec3=sub(vecl,vec2)’, and 'vec3=mul(vecl,vec2)’
perform element-wise addition, subtraction and multiplication of vecl
and vec2 and store the result in vec3.

'vec3=shuffle(vecl, vec2, pattern)’ stores a mixed and shuffled version
of vecl and vec2. The pattern for shuffling is also a vector, which
specifies the new positions of the elements:

vec3.w = vecl[pattern.w] and vec3.x = vecl[pattern.x],
vec3.y = vec2[pattern.y] and vec2.z = vec2[pattern.z]

Points

la|1b | 2a|2b|3a|3b |4 |

5 15 |5 [5 |5]5 |[10]

Total: 90 (+ 10 = 100)

