Exam Parallel Programming 21 January 2005
Department of Computer Science, Faculty of Sciences

1. What is Amdahl’s law?

2. Given below is the pseudo-code for a parallel algorithm that tries to solve the All-pairs
Shortest Paths (ASP) problem, i.e. it computes the shortest route between any two
cities, where the lengths of the direct routes between the cities are given by a NxN
matrix C. The send/receive primitives used are FIFO-ordered, so messages between
two nodes always arrive in the order they were sent.

Explain why this algorithm is incorrect and may sometimes compute incorrect results,
depending on the timing behavior of the program.

int 1b, ub; /* lower/upper bound for this CPU %/
int rowK[N], C[1lb:ub, N]; /* pivot row ; matrix */

for (k = 1; k <= N; k++) {
if (k >= 1b && k <= ub) { /* do I have it? */
rowK = C[k,*];
for (p = 1; p <= nproc; p++) /* broadcast row */
if (p != myprocid) SEND(p, rowK);

} else
RECEIVE_FROM_ANY (&rowK) ; /* receive row */
for (i = 1b; i <= ub; i++) /* update my rows */

for (j = 1; j <= N; j++)
C[i,jl = MIN(C[i,j], C[i,k] + rowK[jl);

3. What is a processor array (vector machine)? Explain how it differs from a multiprocessor
and why it is programmed differently.

4. Explain how an efficient multicast primitive can be implemented on Myrinet by changing
the software (firmware) of the Myrinet network interface cards. Why is such a multicast
primitive faster than a normal spanning-tree multicast primitive on top of point-to-point
message passing over Myrinet?

5. Many iterative parallel programs have to decide at the end of each iteration whether the
program should terminate or continue. Each process therefore has to check whether its
part of the computation satisfies the given convergence criterion. Next, the processes
have to communicate to check if all processes satisfy the criterion; if so, the program
terminates, else it continues.

In Orca, this behavior can be expressed using a ‘voting’ object with the following spe-
cification:



OBJECT SPECIFICATION VotingObject;
OPERATION Vote(YesOrNo: boolean); # vote whether to terminate
OPERATION AwaitDecision(): boolean; # outcome of the voting

END;

Each process first calls the operation Vote (indicating with the Boolean parameter whe-
ther or not it wants to terminate) and then calls AwaitDecision. The latter operation
gives the outcome of the voting process: it returns ‘true’ if all processes want to ter-
minate, and ‘false’ otherwise. The operation blocks until the outcome of the votes is

known.

(a)-Give the-implementation-of-the-VotingObjeet-type-in-Orea;-make-sure-that -the-
operation AwaitDecision returns as soon as the outcome of the votes is clear (i.e.,
one process votes 'no’, or all processes have voted ’yes’). The object needs to work
correctly for only 1 iteration; the number of processes (P) is known and fixed.

(b) Show how the same behavior can be expressed using Linda’s Tuple Space (i.e.,
implement the procedures Vote and AwaitDecision using Linda’s Tuple Space ope-
rations). For the Tuple Space operations, indicate clearly which parameters are
actuals and which are formals.

6. Consider the following (synthetic) HPF program

program hpfprogram
real s, X(100), Y(100) ' s is scalar, X and Y are arrays
IHPF$ PROCESSORS P(4) ‘
IHPF$ ALIGN X(:) WITH Y(:)
IHPF$ ALIGN s WITH Y(*)
1HPF$ DISTRIBUTE Y(BLOCK) ONTO P

X=X=%* 3.0 ! Multiply each X(i) by 3.0
do i = 2,99
Y(i) = X(i-1) + X(i+1)
enddo
s = SUM(X) ! Add all X(i) values
end

(a) Explain how an HPF compiler will parallelize this program

(b) Explain which communication statements the HPF compiler will generate; assume
that the compiler generates MPI calls and tries to make optimal use of the MPI
primitives.

7. Consider an N-body system with 9 bodies, which will be simulated on 8 processors using
the Barnes-Hut algorithm. The figure on the next page shows two different distributions
of the 9 bodies over the 3 processors; the number in each body indicates the CPU to
which the body is assigned.

Explain why the distribution may affect the performance of the parallel program. Which
of the two distributions will give the best speedups? Why?



8. A programmer has implemented a parallel SOR (successive overrelaxation) program
~based on the algorithm given below. The program obtains good speedups-on-a-cluster
consisting of 64 Pentium-4 processors connected by a 1 Gbit/sec Myrinet network.

float G[1b-1:ub+1i, 1:M], Gnew[lb-1i:ub+l, 1:M];

for (step = 0; step < NSTEPS; step++)
SEND (cpuid-1, G[1b]l); /* send 1st row left */
SEND(cpuid+1, G[ubl); /* send last row right */
RECEIVE(cpuid-1, G[1b-1]); /* receive from left */
RECEIVE(cpuid+1l, G[ub+1]); /#* receive from right */
for (1 = 1b; i <= ub; i++) /* update my rows */

for (j = 2; j < M; j++) '
Gnew([i,j] = (G[i,jI+G[i-1,j]1+G[i+1,j]1+G[i,j-11+G[i,j+11)/5

G = Gnew;

The programmer next tries to run this parallel program on a computational grid con-
sisting of two identical clusters, one in Amsterdam and one in Paris, each with 32
Pentium-4 processors connected by Myrinet; the two clusters are connected by a wide-
area network with a bandwidth of 10 Gbit/sec.

(a) Explain in detail why the speedup of the parallel SOR program will be worse on
the two clusters than on one cluster.

(b) Try to think of an optimization that will improve the efficiency of the program on
two clusters.

(c) The programmer does a similar experiment with a TDS (Transposition-Driven
Scheduling) program but now notices hardly any performance difference between
the execution times on 1 cluster and 2 clusters. Explain why this is the case.

Points

Total: 90 (+ 10 = 100)



