Exam Modeling of Business Processes 17 December 2002 This exam consists of 4 problems, each consisting of several questions. All answers should be motivated, including calculations, formulas used, etc. It is allowed to use 1 sheet of paper (or 2 sheets written on one side) with hand-written notes. The minimal note is 1. Questions 1, 2, and 3 each give 2 points when correctly answered, question 4 can give 3 points. The answers may be written down in English or in Dutch. To be handed out as well: table with the standard normal distribution function. The use of a calculator is allowed. - 1. A call center planner uses the Erlang C formula for computing the service level. - a. Give 3 aspects in which the Erlang system does not model most call centers exactly, and explain how this influences the service level. The planner estimates the input parameters as follows: $\lambda = 10$ and $\beta = 2$. With 24 agents the probability of waiting less than 20 seconds is 0.85, according to the Erlang C formula. b. What is the productivity? A colleague analyses the data and says that λ is not always exactly 10, but that it can be somewhere between 9 and 11. - c. How many agents would you schedule to be sure to have approximately an 80% service level? What can you say about the productivity? - d. Explain two possible measures in many call centers that can help to deal with a λ that is not completely known, such that both the service level and the productivity are high. - 2. Consider a 2-out-of-3 system (thus a system that is up if at least 2 of its 3 components are up) with components that have independent identically distributed life times. - a. Give a closed-form expression for the availability of the system at some time t as a function of the probabilities that the components are up. Suppose that life times are exponentially distributed. b. What is the life time distribution of the system? Suppose that there is a single repairman, and that repair times are also exponential. c. Give a formula for the long-run probability that the system is up. - 3. An agricultural firm harvests K kilograms of a certain product. The company has two ways to sell their product: to Albert Heijn at a price p_r per item or at a market at a price p_m . Albert Heijn will buy all the firm is willing to sell them, the demand at the market D is random. Leftover products are worthless. - a. Formulate your expected income as a function of the amount of product that you sell to Albert Heijn. - b. Give the policy that maximizes your expected income. - c. Calculate the policy for K = 1000, $p_r = 0.9$, $p_m = 1.0$, and D is normally distributed with expectation 1100 and standard deviation 300. - d. The management is not only interested in maximizing expected income, but is also risk-averse. What should management do in your opinion? Explain yourself using heuristic arguments. - 4. A machine does two operations consecutively, each operation having an independent exponentially distributed processing time (with averages β_1 and β_2). Assume that input and output buffers can accommodate any number of parts. Orders arrive according to a Poisson process with rate λ . - a. For which parameter values is the waiting time finite? - b. Give an expression for $\mathbb{E}(X+Y)^2$ for general and independent X and Y. - c. Calculate the waiting time for $\lambda = 1$, $\beta_1 = 1/2$, and $\beta_2 = 1/3$. Now assume that it is possible to change the machine such that the two operations can be executed at the same time. - d. Show that the service time is of the form X + ZU + (1 Z)V, with X, U, V, and Z independent and $Z \in \{0, 1\}$. - e. Give an expression for $\mathbb{E}(X + ZU + (1 Z)V)^2$. - f. Calculate again the waiting time for $\lambda = 1$, $\beta_1 = 1/2$, and $\beta_2 = 1/3$. ## Standard normal distribution function & Standard normale verdelingsfunctie 4. Waarden van $10^4.0(x)$ voor x = 0.00 (0.01) 3.49. Values of $10^4 p(x)$ for x = 0.01, 0.02, ..., 3.49 | х | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |------------|--------------|----------------------|----------------------|--------------------------|------------------------------|---------------|----------------------|--------------|-----------------------|----------------------------------| | 0,0 | 5000
5398 | 5040
5438 | 5080
5478 | 51 20
551 7 | 51 60
5557 | 51 99
5596 | 5239
5636 | 5279
5675 | 5319
5714 | 5359
5753 | | 0,1 | 5793 | 5832 | 5871 | 5910 | 5948 | 5987 | 6026 | 6064 | 6103 | 6141 | | 0,3 | 6179
6554 | 621 <i>7</i>
6591 | 6255
6628 | 6293
6664 | 6331
6700 | 6368
6736 | 6406
6772 | 6443
6808 | 6480
6844 | 6517
6879 | | 0,5 | 6915 | 6950 | 6985 | 7019 | 7054 | 7088 | 71 23 | 7157 | 7190 | 7224 | | 0,6 | 7257
7580 | 7291
7611 | 7324
7642 | 7357
7673 | 7389
7704 | 7422
7734 | 7454
7764 | 7486
7794 | 7517
7823 | 7549
7852 | | 0,8 | 7881
8159 | 7910
8186 | 7939
8212 | 7967
8238 | 7995
8264 | 8023
8289 | 8051
831 <u>5</u> | 8078
8340 | 81 06
836 <u>5</u> | 8133
8389 | | 1,0 | 8413 | 8438 | 8461 | 8485 | 8508 | 8531 | 8554 | 8577 | 8599 | 8621 | | 1,1 | 8643
8849 | 8665
8869 | 8686
8888 | 870 8
8907 | 8729
8925 | 8749
8944 | 8770
8962 | 8790
8980 | 8810
8997 | 8830
9015 | | 1,2 | 9032 | 9049 | 9066 | 9082 | 9099 | 9115 | 9131 | 9147 | 9162 | 9177 | | 1,4 | 9192 | 9207 | 9222 | 9236 | 9251 | 926 <u>5</u> | 9279 | 9292 | 9306 | 9319 | | 1,5 | 9332 | 9345 | 9357 | 9370 | 9382 | 9394 | 9406 | 9418 | 9429 | 9441 | | 1,6 | 9452
9554 | 9463
9564 | 9474
9573 | 9484
9582 | 949 <u>5</u>
959 1 | 9505
9599 | 9515
9608 | 9525
9616 | 9535
9625 | 954 <u>5</u>
963 3 | | 1,8 | 9641 | 9649 | 9656 | 9664 | 9671 | 9678 | 9686 | 9693 | 9699 | 9706 | | 1,9 | 9713 | 9719 | 9726 | 9732 | 9738 | 9744 | 9750 | 9756 | 9761 | 9767 | | 2,0 | 9772
9821 | 9778 | 978 3
9830 | 9788
9834 | 979 3
9838 | 9798
9842 | 980 3
9846 | 9808
9850 | 9812
9854 | 9817
9857 | | 2,1 | 9861 | 9826
9864 | 9868 | 9871 | 9875 | 9878 | 9881 | 9884 | 9887 | 9890 | | 2,3 | 9893 | 9896 | 9898 | 9901 | 9904 | 9906 | 9909 | 9911 | 9913 | 9916 | | 2,4 | 9918 | 9920 | 9922 | 992 <u>5</u> | 9927 | 9929 | 9931 | 9932 | 9934 | 9936 | | 2,5 | 9938 | 9940 | 9941 | 9943 | 9945 | 9946 | 9948 | 9949 | 9951 | 9952 | | 2,6
2,7 | 9953
9965 | 995 <u>5</u>
9966 | 9956
996 7 | 9957
9968 | 9959
9969 | 9960
9970 | 9961
9971 | 9962
9972 | 9963
99 73 | 9964 | | 2,8 | 9974 | 9975 | 9976 | 9977 | 9977 | 9978 | 9979 | 9979 | 9980 | 9981 | | 2,9 | 9981 | 9982 | 9982 | 9983 | 9984 | 9984 | 998 <u>5</u> | 9985 | 9986 | 9986 | | 3,0 | 9987 | 9987 | 9987 | 9988 | 9988 | 9989 | 9989 | 9989 | 9990 | 9990 | | 3,1
3,2 | 9990 | 9991
9993 | 9991
9994 | 9991
9994 | 9992 -
9994 | 9992
9994 | 9992
9994 | 9992
9995 | 9993
9995 | 9993 | | 3,3 | 9995 | 9995 | 9995 | 9996 | 9996 | 9996 | 9996 | 999 <u>6</u> | 9996 | 9997 | | 3,4 | 9997 | 9997 | 9997 | 9997 | 999 7 | 9997 | 9997 | 9997 | 9997 | 9998 |