Exam Modeling of Business Processes 17 December 2002

This exam consists of 4 problems, each consisting of several questions.

All answers should be motivated, including calculations, formulas used, etc.

It is allowed to use 1 sheet of paper (or 2 sheets written on one side) with hand-written notes.

The minimal note is 1. Questions 1, 2, and 3 each give 2 points when correctly answered, question 4 can give 3 points.

The answers may be written down in English or in Dutch.

To be handed out as well: table with the standard normal distribution function.

The use of a calculator is allowed.

- 1. A call center planner uses the Erlang C formula for computing the service level.
- a. Give 3 aspects in which the Erlang system does not model most call centers exactly, and explain how this influences the service level.

The planner estimates the input parameters as follows: $\lambda = 10$ and $\beta = 2$. With 24 agents the probability of waiting less than 20 seconds is 0.85, according to the Erlang C formula.

b. What is the productivity?

A colleague analyses the data and says that λ is not always exactly 10, but that it can be somewhere between 9 and 11.

- c. How many agents would you schedule to be sure to have approximately an 80% service level? What can you say about the productivity?
- d. Explain two possible measures in many call centers that can help to deal with a λ that is not completely known, such that both the service level and the productivity are high.
- 2. Consider a 2-out-of-3 system (thus a system that is up if at least 2 of its 3 components are up) with components that have independent identically distributed life times.
- a. Give a closed-form expression for the availability of the system at some time t as a function of the probabilities that the components are up.

Suppose that life times are exponentially distributed.

b. What is the life time distribution of the system?

Suppose that there is a single repairman, and that repair times are also exponential.

c. Give a formula for the long-run probability that the system is up.

- 3. An agricultural firm harvests K kilograms of a certain product. The company has two ways to sell their product: to Albert Heijn at a price p_r per item or at a market at a price p_m . Albert Heijn will buy all the firm is willing to sell them, the demand at the market D is random. Leftover products are worthless.
- a. Formulate your expected income as a function of the amount of product that you sell to Albert Heijn.
- b. Give the policy that maximizes your expected income.
- c. Calculate the policy for K = 1000, $p_r = 0.9$, $p_m = 1.0$, and D is normally distributed with expectation 1100 and standard deviation 300.
- d. The management is not only interested in maximizing expected income, but is also risk-averse. What should management do in your opinion? Explain yourself using heuristic arguments.

- 4. A machine does two operations consecutively, each operation having an independent exponentially distributed processing time (with averages β_1 and β_2). Assume that input and output buffers can accommodate any number of parts. Orders arrive according to a Poisson process with rate λ .
- a. For which parameter values is the waiting time finite?
- b. Give an expression for $\mathbb{E}(X+Y)^2$ for general and independent X and Y.
- c. Calculate the waiting time for $\lambda = 1$, $\beta_1 = 1/2$, and $\beta_2 = 1/3$.

Now assume that it is possible to change the machine such that the two operations can be executed at the same time.

- d. Show that the service time is of the form X + ZU + (1 Z)V, with X, U, V, and Z independent and $Z \in \{0, 1\}$.
- e. Give an expression for $\mathbb{E}(X + ZU + (1 Z)V)^2$.
- f. Calculate again the waiting time for $\lambda = 1$, $\beta_1 = 1/2$, and $\beta_2 = 1/3$.

Standard normal distribution function & Standard normale verdelingsfunctie 4.

Waarden van $10^4.0(x)$ voor x = 0.00 (0.01) 3.49.

Values of $10^4 p(x)$ for x = 0.01, 0.02, ..., 3.49

х	0	1	2	3	4	5	6	7	8	9
0,0	5000 5398	5040 5438	5080 5478	51 20 551 7	51 60 5557	51 99 5596	5239 5636	5279 5675	5319 5714	5359 5753
0,1	5793	5832	5871	5910	5948	5987	6026	6064	6103	6141
0,3	6179 6554	621 <i>7</i> 6591	6255 6628	6293 6664	6331 6700	6368 6736	6406 6772	6443 6808	6480 6844	6517 6879
0,5	6915	6950	6985	7019	7054	7088	71 23	7157	7190	7224
0,6	7257 7580	7291 7611	7324 7642	7357 7673	7389 7704	7422 7734	7454 7764	7486 7794	7517 7823	7549 7852
0,8	7881 8159	7910 8186	7939 8212	7967 8238	7995 8264	8023 8289	8051 831 <u>5</u>	8078 8340	81 06 836 <u>5</u>	8133 8389
1,0	8413	8438	8461	8485	8508	8531	8554	8577	8599	8621
1,1	8643 8849	8665 8869	8686 8888	870 8 8907	8729 8925	8749 8944	8770 8962	8790 8980	8810 8997	8830 9015
1,2	9032	9049	9066	9082	9099	9115	9131	9147	9162	9177
1,4	9192	9207	9222	9236	9251	926 <u>5</u>	9279	9292	9306	9319
1,5	9332	9345	9357	9370	9382	9394	9406	9418	9429	9441
1,6	9452 9554	9463 9564	9474 9573	9484 9582	949 <u>5</u> 959 1	9505 9599	9515 9608	9525 9616	9535 9625	954 <u>5</u> 963 3
1,8	9641	9649	9656	9664	9671	9678	9686	9693	9699	9706
1,9	9713	9719	9726	9732	9738	9744	9750	9756	9761	9767
2,0	9772 9821	9778	978 3 9830	9788 9834	979 3 9838	9798 9842	980 3 9846	9808 9850	9812 9854	9817 9857
2,1	9861	9826 9864	9868	9871	9875	9878	9881	9884	9887	9890
2,3	9893	9896	9898	9901	9904	9906	9909	9911	9913	9916
2,4	9918	9920	9922	992 <u>5</u>	9927	9929	9931	9932	9934	9936
2,5	9938	9940	9941	9943	9945	9946	9948	9949	9951	9952
2,6 2,7	9953 9965	995 <u>5</u> 9966	9956 996 7	9957 9968	9959 9969	9960 9970	9961 9971	9962 9972	9963 99 73	9964
2,8	9974	9975	9976	9977	9977	9978	9979	9979	9980	9981
2,9	9981	9982	9982	9983	9984	9984	998 <u>5</u>	9985	9986	9986
3,0	9987	9987	9987	9988	9988	9989	9989	9989	9990	9990
3,1 3,2	9990	9991 9993	9991 9994	9991 9994	9992 - 9994	9992 9994	9992 9994	9992 9995	9993 9995	9993
3,3	9995	9995	9995	9996	9996	9996	9996	999 <u>6</u>	9996	9997
3,4	9997	9997	9997	9997	999 7	9997	9997	9997	9997	9998