Exam Asymptotic Statistics, Mathematische Statistiek

January 30, 2007

Department of Mathematics, Faculty of Sciences, vrije Universiteit

- 1. a) Consider a sequence of random variables (X_n) for which $E|X_n|=O(1)$ as $n\to\infty$. Show that this sequence is tight. Can tightness also be proved under the assumption that $EX_n=O(1)$ as $n\to\infty$?
 - b) Suppose that $\sqrt{n}(T_n \theta)$ converges in distribution. Show that $T_n \to P \theta$ as $n \to \infty$.
 - c) Consider two sequences of random variables (X_n) and (Y_n) such that $X_n \rightsquigarrow N_1$ and $Y_n \rightsquigarrow N_2$ for two independent standard normal random variables N_1 and N_2 . Prove or disprove (by counterexample) that this implies

$$\left(\begin{array}{c} X_n \\ Y_n \end{array}\right) \leadsto \left(\begin{array}{c} N_1 \\ N_2 \end{array}\right).$$

- d) Consider an i.i.d. sequence of random variables X_1, X_2, \ldots , where X_i is uniformly distributed on the interval $(0, \theta)$ for some $\theta > 0$. Show that $\max_{1 \le i \le n} X_i \to^P \theta$ as $n \to \infty$.
- 2. Consider the random vector $Y_n = (Y_{n,1}, \dots, Y_{n,k})$, multinomially distributed with parameters n and (p_1, \dots, p_k)
 - a) Formulate a theorem for the asymptotic distribution (for $n \to \infty$) of the sequence of random variables X_n , where

$$X_n = \sum_{i=1}^k \frac{(Y_{n,i} - np_i)^2}{np_i}$$

- b) Prove this theorem.
- 3. The random variables X_1, X_2, \ldots are independent and distributed according to the Poisson distribution with (unknown) parameter $\theta > 0$:

$$P_{\theta}(X_1 = k) = \frac{\theta^k}{k!} e^{-\theta}, \ k = 0, 1, 2, \dots$$

This means that the expectation as well as the variance of X_1 is θ . Denote by \bar{X}_n the mean of the first n X_i 's in the sequence.

- a) Show that \bar{X}_n is a consistent estimator of θ and derive the asymptotic distribution of $\sqrt{n}(\bar{X}_n \theta)$.
- b) Construct a variance stabilizing transformation ϕ for the sample mean in this model and derive the asymptotic distribution of $\sqrt{n}(\phi(\bar{X}_n) \phi(\theta))$.
- 4. Consider the location family of normal distributions with unit variance:

$$p_{\theta}(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\theta)^2/2} x \epsilon \mathbb{R}.$$

Let X_1, X_2, \ldots be independent and normally distributed random variables with density p_{θ_0} , and 'true parameter' θ_0 . Define, for $\theta \in \mathbb{R}$, the function

$$\psi_{\theta}(x) = (x - \theta)^3 \quad (x \in \mathbb{R})$$

and consider the Z-estimator $\hat{\theta}_n$ defined as a zero of the function

$$\Psi_n(\theta) = I\!\!P_n \psi_{\theta} = rac{1}{n} \sum_{i=1}^n \psi_{\theta}(X_i)$$

- a) Using properties of the function Ψ_n , show that $\hat{\theta}_n$ is well defined. In other words: show that Ψ_n has exactly one point where it becomes zero.
- b) Prove that $\hat{\theta}_n \to^P \mu$.

You may use that $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^6 e^{-x^2/2} dx = 15$.

- c) The random variables $\sqrt{n}(\hat{\theta}_n \theta_0)$ are asymptotically normally distributed. Use the parameter you expect for the asymptotic variance to compute the asymptotic relative efficiency of $\hat{\theta}_n$ and the sample mean \bar{X}_n
- 5. a) Given a sample X_1, \ldots, X_n from a distribution with probability density f, give the definition of the kernel estimator $\hat{f}_{n,h}$ based on this sample.
 - b) Show that the Mean Integrated Squared Error of $\hat{f}_{n,h}$ decomposes in a bias- and variance term.
 - c) Formulate the Glivenko Cantelli theorem.

Grading:

1a: 2	1c: 2	2a: 1	3a: 2	4a: 2	4c: 3	5b: 3
1b: 2	1d: 3	2b: 4	3b: 3	4b: 3	5a: 3	5c: 3

The final grade is computed as follows: $\frac{\text{number of points} + 4}{4}$. Good luck with the exam!