Vrije Universiteit



Give clear but brief explications of your answers! You may write your answers in Dutch, English or French. This exam has 5 problems on 2 pages. The (nonuniform) credits are listed at the end of the exam.

The random vectors  $(X_1, Y_1), \ldots, (X_n, Y_n)$  are independent and bivariate-normally distributed with  $EX_1 = EY_1 = \mu$ ,  $var X_1 = var Y_1 = 1$ , and  $cov(X_1, Y_1) = \rho$ . We define estimators

$$\hat{\mu}_n = \frac{1}{2}\bar{X}_n + \frac{1}{2}\bar{Y}_n,$$

$$\hat{\rho}_n = \frac{1}{n}\sum_{i=1}^n (X_i - \hat{\mu}_n)(Y_i - \hat{\mu}_n).$$

- a. Show that  $\hat{\rho}_n$  is asymptotically consistent for  $\rho$ .
- b. Show that  $\operatorname{var}((X_1 \mu)(Y_1 \mu)) = 1 + \rho^2$  and  $\operatorname{cov}(X_1 \mu, (X_1 \mu)(Y_1 \mu)) = 0$ . c. Show that the sequence  $\sqrt{n}(\hat{\rho}_n \rho)$  converges in distribution to the  $N(0, 1 + \rho^2)$ distribution.
- d. Give the form of a test for the null hypothesis  $H_0$ :  $\rho = 0$  of asymptotic level 5 %.
- e. Show that this test rejects with probability tending to one as  $n \to \infty$  if  $\rho > 0$ .
- f. The sample correlation coefficient  $r_n$  is known to satisfy that  $\sqrt{n}(r_n \rho)$  tends to a  $N(0,(1-\rho^2)^2)$ -distribution. Which of the estimators  $\hat{\rho}_n$  or  $r_n$  is preferable?
- 2. Assume that  $(Y_1, X_1), \ldots, (Y_n, X_n)$  are independent and identically distributed stochastic vectors distributed according to the non-linear regression model

$$Y_i = \sin(\theta_0 X_i) + e_i,$$

for  $\theta_0 \in (0,1)$  and independent random variables  $X_i$  and  $e_i$  with  $X_i$  uniformly distributed on (0,1) and  $e_i$  normally distributed with mean zero  $(i=1,2,\ldots,n)$ . Let  $\hat{\theta}_n$  be the point of minimum of

$$\theta \mapsto \sum_{i=1}^{n} (Y_i - \sin(\theta X_i))^4, \quad \theta \in [0, 1].$$

- a. Give a heuristic argument showing that the sequence  $\hat{\theta}_n$  converges in probability to  $\theta_0$ .
- b. Which theorems and/or lemmas can be used to make this argument mathematically rigorous?
- c. Which limit distribution do you expect for the sequence  $\sqrt{n}(\hat{\theta}_n \theta_0)$ ?
- 3. Assume that  $X_n$  possesses a multinomial distribution with parameters n and  $p=(p_1,\ldots,p_k)$ .
  - a. Formulate a theorem concerning the limit in distribution of the sequence of variables  $\sum_{i=1}^{k} (X_{ni} - np_i)^2 / (np_i) \text{ as } n \to \infty.$
  - b. Prove this theorem.
- 4. Let  $X_1, \ldots, X_n$  be independent and identically distributed random variables with density f.
  - a. Give the formula for a kernel estimator  $\hat{f}_n$  for f.
  - b. Give the definition of the mean integrated square error (MISE) of  $\hat{f}_n$  and derive its decomposition in square bias and variance.
  - c. If it is known that f is once differentiable with derivative satisfying  $\int f'(x)^2 dx < \infty$ , then it can be shown that the square bias is bounded above by a multiple of  $C_f h^2$  for h the bandwidth of the kernel estimator and  $C_f := \int f'(x)^2 ds$ . Which (asymptotic) choice of bandwidth can be recommended as  $n \to \infty$  if no more is a-priori known about f?

5. Suppose that  $(Y_1, X_1), \ldots, (Y_n, X_n)$  are i.i.d. stochastic vectors with  $X_i \in \mathbb{R}$ ,  $Y_i \in \{0, 1\}$  and a discrete distribution given by

$$P_{\theta}(X_i = x, Y_i = y) = h(x) \psi(\theta x)^y \left(1 - \psi(\theta x)\right)^{1-y}.$$

Here h and  $\psi$  are known functions and  $\theta \in \mathbb{R}$  is an unknown parameter.

- a. Determine the score function of the model.
- b. Show that the Fisher information for  $\theta$  in a single observation  $(X_i, Y_i)$  is given by

$$i_{\theta} = \mathbf{E} \frac{\psi'(\theta X_1)^2 X_1^2}{\psi(\theta X_1) \left(1 - \psi(\theta X_1)\right)}.$$

- c. Give a general formula for an asymptotic confidence interval based on the maximum likelihood estimator.
- d. Numerical maximization of the likelihood function given 100 observed values  $(x_1, y_1), \ldots, (x_{100}, y_{100})$  yields the maximum likelihood estimator  $\hat{\theta} = 1$ . The observed values  $x_1, \ldots, x_{100}$  are 50 times 0 and 50 times log 2. We choose  $\psi(x) = (1 + e^x)^{-1}$ . Determine an approximate 95 % confidence interval for  $\theta$  based on the maximum likelihood estimator.

## Credits:

1a: 2 2a: 4 3:8 4a: 2 5a: 2 5b: 2 4b: 3 2b: 2 1b: 4 2c: 4 4c: 3 5c: 2 1c: 7 5d: 2 1d: 2 1e: 2 1f: 2

Mark = total/53\*9+1.

Graded exams can be inspected at the student administration of the Vrije Universiteit from three weeks after the exam onwards.