Afdeling Wiskunde Exam Mathematische Statistiek/Asymptotic Statistics Vrije Universiteit 20 December 2005 Give clear but brief explications of your answers! You may write your answers in Dutch, English or French. This exam has 5 problems on 2 pages. $$T_n = 2n(\sqrt{\bar{X}_n} - \sqrt{\bar{Y}_n})^2.$$ - a. Find critical values such that the asymptotic level of the sequence of tests is α (as $n \to \infty$). - b. Show that the test rejects alternatives (with $\mu \neq \nu$) with probability tending to 1 (as $n \to \infty$). - 2. Assume that $(Y_1, X_1), \ldots, (Y_n, X_n)$ are independent and identically distributed stochastic vectors distributed according to the non-linear regression model $$Y_i = e^{\theta_0 X_i} + e_i,$$ for $\theta_0 \in (0,1)$ and independent random variables X_i and e_i with the uniform distribution on (0,1) and a distribution with $\mathrm{E}e_i = 0$ and $\mathrm{E}e_i^2 < \infty$, respectively $(i=1,2,\ldots,n)$. Let $\hat{\theta}_n$ be the point of minimum of $$\theta \mapsto \sum_{i=1}^{n} (Y_i - e^{\theta X_i})^2, \quad \theta \in [0, 1].$$ - a. Give a heuristic argument showing that the sequence $\hat{\theta}_n$ converges in probability to θ_0 . - b. Which theorems and/or lemmas can be used to make this argument mathematically rigorous? - c. Which limit distribution do you expect for the sequence $\sqrt{n}(\hat{\theta}_n \theta_0)$? - d. Assume that each e_i possesses the standard normal distribution. Find an expression for the Fisher information for θ . - e. Relate the answers to questions b) and c) by reference to a theorem on the asymptotic properties of certain M-estimators. - 3. Assume that X_n possesses a multinomial distribution with parameters n and $p = (p_1, \dots, p_k)$. - a. Formulate a theorem concerning the limit in distribution of the sequence of variables $\sum_{i=1}^{k} (X_{ni} np_i)^2 / (np_i)$ as $n \to \infty$. - b. Prove this theorem. - 4. Let X_1, \ldots, X_n be independent and identically distributed random variables with density f. - a. Give the formula for a kernel estimator \hat{f}_n for f. - b. Give the definition of the mean integrated square error (MISE) of \hat{f}_n and its decomposition in square bias and variance. - c. If it is known that f is once differentiable with derivative satisfying $\int f'(x)^2 ds < \infty$, then it can be shown that the square bias is bounded above by a multiple of $C_f h^2$ for h the bandwidth of the kernel estimator and $C_f := \int f'(x)^2 ds$. Which (asymptotic) choice of bandwidth can be recommended as $n \to \infty$ if no more is a-priori known about f? - The random variables X_1, \ldots, X_n are i.i.d. with a uniform distribution on $[-\theta, \theta]$ for some unknown parameter $\theta > 0$. To estimate θ we consider the estimators $S_n = (X_{(n)} X_{(1)})/2$ - and $T_n = \sqrt{(3/n)\sum_{i=1}^n X_i^2}$. a. Show that the sequence $n(X_{(1)} + \theta, \theta X_{(n)})$ converges in distribution to a random vector $2\theta(Z_1, Z_2)$ for a pair of independent standard exponential variables Z_1, Z_2 . - b. Determine the limit distribution of the sequence $n(S_n \theta)$. - c. Indicate how an asymptotic confidence interval for θ based on S_n can be constructed. - d. Determine the limit distribution of the sequence $\sqrt{n}(T_n \theta)$. - e. Which of the two estimator sequences S_n or T_n is preferable? ## Credits: | 1a: 6 | 2a: 4 | 3a: 8 | 4a: 2 | 5a: 3 | |-------|-------|-------|-------|-------| | 1b: 3 | 2b: 2 | | 4b: 3 | 5b: 2 | | | 2c: 4 | | 4c: 3 | 5c: 2 | | | 2d: 3 | | | 5d: 3 | | | 2e: 3 | | | 5e: 2 | | | | | | | Mark = total/53*9+1. Graded exams can be inspected at the student administration of the Vrije Universiteit from three weeks after the exam onwards.