Vrije Universiteit

21 December 20

Exam Mathematische Statistiek (6 ECTS): problems 1, 2, 3, 4, 5. Exam Asymptotic Statistics (8 ECTS): problems 1, 2, 3, 4, 6. Give clear but brief explications of your answers! You may write your answers in Dutch, English or French.

- 1. The random variables  $X_1, \ldots, X_n$  and  $Y_1, \ldots, Y_n$  are independent, with  $X_i$  Poisson distributed with parameter  $\theta$  and  $Y_i$  Poisson distributed with parameter  $\eta$   $(i = 1, \ldots, n)$ . (The Poisson distribution with parameter  $\theta$  puts probability  $e^{-\theta}\theta^k/k!$  at the points  $k \in \{0, 1, 2, \ldots\}$  and has mean and variance  $\theta$ .)
  - a. Determine constants  $a_n$  and  $b_n$  such that the sequence  $a_n(\bar{X}_n/\bar{Y}_n-b_n)$  converges in distribution to a normal distribution with a positive variance. Which variance?
  - b. Derive an asymptotic confidence interval for  $\theta/\eta$ .
- 2. Assume that  $(Y_1, X_1), \ldots, (Y_n, X_n)$  are independent and identically distributed stochastic vectors distributed according to the non-linear regression model

$$Y_i = \cos(\theta_0 X_i) + e_i,$$

for  $\theta_0 \in (0, \infty)$  and independent random variables  $X_i$  and  $e_i$  with the standard exponential distribution on  $(0, \infty)$  and a distribution with  $Ee_i = 0$  and  $Ee_i^2 < \infty$ , respectively (i = 1, 2, ..., n). Let  $\hat{\theta}_n$  be the point of minimum of

$$\theta \mapsto \sum_{i=1}^{n} (Y_i - \cos(\theta X_i))^2, \qquad \theta \ge 0.$$

- a. Give a heuristic argument showing that the sequence  $\hat{\theta}_n$  converges in probability to  $\theta_0$ .
- b. Which limit distribution do you expect for the sequence  $\sqrt{n}(\hat{\theta}_n \theta_0)$ ?
- c. Assume that each  $e_i$  possesses the standard normal distribution. Find an expression for the Fisher information for  $\theta$ .
- d. Relate the answers to questions b) and c) by reference to a theorem on the asymptotic properties of certain M-estimators.
- 3. Assume that  $X_n$  possesses a multinomial distribution with parameters n and  $p = (p_1, \ldots, p_k)$ .
  - a. Formulate a theorem concerning the limit in distribution of the sequence of variables  $\sum_{i=1}^{k} (X_{ni} np_i)^2 / (np_i)$  as  $n \to \infty$ .
  - b. Prove this theorem.
- 4. Let X and Y be independent standard normal variables.
  - a. Show that the variables X Y and X + Y are independent.
  - b. Show that the variables  $\frac{1}{2}(X^2 Y^2)$  and XY are identically distributed.
- 5. (Only Mathematische Statistiek.) Let  $X_1, \ldots, X_n$  be independent and identically distributed random variables with density f.
  - a. Give the formula for a kernel estimator  $\hat{f}_n$  for f.
  - b. Express the bias of  $\hat{f}_n(x)$  in f (and the kernel).
  - c. Give the definition of the mean integrated square error (MISE) of  $\hat{f}_n$ .

- 6. (Only Asymptotic Statistics.) Consider the following statistical experiments (i) and (ii):
- (i) We observe an i.i.d. sample  $X_1, \ldots, X_n$  from a density  $x \mapsto p_{\theta}(x)$  for which the corresponding model  $\{p_{\theta} : \theta \in \mathbb{R}\}$  satisfies the local asymptotic normality assumption: for any  $h \in \mathbb{R}$ :

$$\log \prod_{i=1}^{n} \frac{p_{\theta+h/\sqrt{n}}(X_i)}{p_{\theta}(X_i)} = h\Delta_{n,\theta} - \frac{1}{2}h^2I_{\theta} + o_P(1),$$

under  $\theta$ , where  $I_{\theta} \in (0, \infty)$  and  $\Delta_{n,\theta}$  is a sequence of random variables that tends in distribution under  $\theta$  to the normal distribution with mean zero and variance  $I_{\theta}$ .

- (ii) We observe a single observation X from the  $N(h, 1/I_{\theta})$ -distribution, where h is the unknown parameter.
  - a. Formulate a theorem that relates these two experiments.
  - b. Suppose that  $S_n \rightsquigarrow S$  implies that  $\liminf ES_n^2 \ge ES^2$ , for any sequence of random variables  $S_n$  and S.
  - c. It is known that in experiment (ii) any (randomized) estimator T of h satisfies  $\sup_{h\in\mathbb{R}} \mathrm{E}_h(T-h)^2 \geq 1/I_\theta$ . What does this imply for

$$\sup_{h \in \mathbb{R}} \mathcal{E}_{\theta+h/\sqrt{n}} n (T_n - \theta - h/\sqrt{n})^2$$

for estimators  $T_n$  in the experiments (i), as  $n \to \infty$ ? (You may (but do not have to) assume that the sequence  $\sqrt{n}(T_n - \theta)$  tends in distribution to a limit.)

## Credits:

| 1a: 6 | 2a: 5 | 3a: 4 | 4a: 3 | 5a: 3 | 6a: 6 |
|-------|-------|-------|-------|-------|-------|
| 1b: 4 | 2b: 5 | 3b: 5 | 4b: 2 | 5b: 4 | 6b: 1 |
|       | 2c: 5 |       |       | 5c: 3 | 6c: 3 |
|       | 2d: 5 |       |       |       |       |

Mark = total/6+1.