Exam Logical Verification

January 16, 2009

There are six (6) exercises.

Answers may be given in Dutch or English. Good luck!

Exercise 1. This exercise is concerned with first-order propositional logic (prop1) and simply typed λ -calculus ($\lambda \rightarrow$).

a. Give a proof in prop1 showing that the following formula is a tautology:

$$((A \rightarrow B \rightarrow A) \rightarrow B) \rightarrow B$$

(5 points)

- b. Give the type-derivation in $\lambda \rightarrow$ corresponding to the proof in 1a. (5 points)
- c. Give closed inhabitants in simply typed λ -calculus of the following types:

$$\begin{array}{c} (A \rightarrow A \rightarrow B) \rightarrow A \rightarrow B \\ (A \rightarrow B \rightarrow C) \rightarrow B \rightarrow A \rightarrow C \\ ((B \rightarrow A \rightarrow B) \rightarrow A) \rightarrow A \end{array}$$

(5 points)

Exercise 2. This exercise is concerned with first-order predicate logic (pred1) and λ -calculus with dependent types (λP).

a. Give a proof in pred1 with a \forall -detour showing that the following formula is a tautology:

$$\forall x. (P(x) \to (\forall y. P(y) \to A) \to A)$$

(5 points)

- b. Give the λP -term corresponding to the formula in 2a. (5 points)
- c. Give a closed inhabitant in λP of the answer to 2b. (5 points)

Exercise 3. This exercise is concerned with second-order propositional logic (prop2) and polymorphic λ -calculus (λ 2).

a. Give a proof in prop2 showing that the following formula is a tautology:

$$(\forall c. ((a \rightarrow b \rightarrow c) \rightarrow c)) \rightarrow a$$

(5 points)

- b. Give the $\lambda 2$ -type corresponding to the formula of 3a. (5 points)
- c. Give a closed inhabitant in $\lambda 2$ of the answer to 3b. (5 points)

Exercise 4. This exercises is concerned with encodings.

a. The data-type of booleans is encoded in $\lambda 2$ as follows:

Bool =
$$\Pi a : *. a \rightarrow a \rightarrow a$$

Give two different closed inhabitants of Bool that can be used as encodings of true and false.

(5 points)

b. The disjunction $\operatorname{Or} AB$ is encoded in $\lambda 2$ as follows:

$$\operatorname{Or} AB = \Pi c : *. (A \to c) \to (B \to c) \to c$$

Assume P:A and use P to give an inhabitant of Or AB. (5 points)

c. Assume the following setting in Coq:

(* prop representing the propositions is declared as a Set *)
Parameter prop : Set.

(* implication on prop is a binary operator *)
Parameter imp : prop -> prop -> prop.

(* T expresses if a proposion in prop is valid

if (T p) is inhabited then p is valid

if (T p) is not inhabited then p is not valid *)

Parameter T : prop -> Prop.

Give the type of imp_introduction, the variable that models the introduction rule for imp.

(5 points)

Exercise 5. This definition is concerned with inductive data-types in Coq.

a. Give the definition of an inductive data-type two with exactly two elements.

(5 points)

- b. Give the induction principle for two_ind, for your data-type from 5a.(5 points)
- c. Give the definition of an inductive data-type natpair of pairs of natural numbers. (You can use the data-type nat of natural numbers.)
 (5 points)

Exercise 6. This exercise is concerned with inductive predicates in Coq.

a. Complete the following definition of conjunction:

```
Inductive and (A : Prop) (B : Prop) : Prop :=
(4 points)
```

b. Consider the following inductive predicates:

```
Inductive ev : nat -> Prop :=
| ev0 : ev 0
| evS : forall n:nat , odd n -> ev (S n)
with odd : nat -> Prop :=
| oddS : forall n:nat , ev n -> odd (S n) .
```

Give inhabitants of the following:

```
ev 0
odd 1
ev 2
(6 points)
```

c. Complete the following definition of the inductive predicate even:

```
Inductive even : nat -> Prop :=
| even0 :
| evenSS :
(5 points)
```

The final note is (the total amount of points plus 10) divided by 10.

.