Exam Logical Verification

January 19, 2005

There are six (6) exercises.
Answers may be given in Dutch or English. Good luck!

Exercise 1. This exercise is concerned with first-order minimal propositional
logic and simply typed A-calculus.

a. Show that the formula (A - B - C) -+ B — A — C is a tautology.
(5 points)

b. Give the type derivation in simply typed A-calculus corresponding to the
proof of 1a.
(5 points)

c. Replace in the following three terms the 7’s by simple types, such that we
obtain typable A-terms. (NB: it is not asked to give the type derivations.)
Az Ay Az .z (y2)

Az Ay Az oz (zy)
Az Ay Az T (z2)y
(6 points)

d. Give a proof of (A — A) -+ A — A with a detour.
(4 points)

Exercise 2. This exercise is concerned with inductive types and recursive
function definitions in Cog.

a. Give the inductive definition of the datatype boollist of lists of booleans
(the type of booleans is called bool).
(5 points)

b. Give the type of boollist_ind which is used to give proofs by induction
on these lists of booleans. '

(5 points)



c. Give the definition of a recursive function
nat_of_boollist : boollist ~> nat

which interprets a list of booleans as a natural number in binary notation
(false for 0 and true for 1) but with the bits in reverse. For example
nat_of_boollist (cons true (cons true (cons false (cons true (cons
falsenil))))) is the binary number 01011, which has decimal value 11.

In your definition you can use the functions plus for addition and mult
for multiplication of natural numbers.

(5 points)

Exercise 3. This exercise is concerned with first-order predicate logic.

a. Which are the two rules of first-order intuitionistic predicate logic that
have a variable condition? (NB: you do not need to describe the variable
conditions, just mentioning the names of the rules is sufficient.)

(3 points)

b. Show that (Jz. (P(z) vV Q(z))) = ((F=z. P(z)) V (3z. Q(z))) is a tautology
of first-order intuitionistic predicate logic.

(9 points)

Exercise 4. This exercise is concerned with program extraction.

a. What is the Brouwer-Heyting-Kolmogorov interpretation?

(5 points)

b. If one proves in Coq
foralln : nat, "(n=0) -> {m : nat | Sm = n}

then one can extract a function from the proof. What is the type of this
function? What does it compute?

(5 points)

Exercise 5. This exercise is concerned with A-calculus with dependent types
(A\P).

a. How does one write the function type A — B in the form of a dependent
product type?

(3 points)

b. Define (using Coq syntax) a dependent type




Is_true : bool -> Prop

such that Is_true b is inhabited if and only if b is equal to true.
(5 points)

. Replace in the following judgment the two ?’s

b:? F Tz :b.ox: ?

such that it becomes a correct AP judgment. (For your convenience you
will find the AP type derivation rules on the next page. NB: you do not
need to give a type derivation of this judgment.)

(5 points)

Exercise 6. This exercise is concerned with second-order propositional logic
and polymorphic A-calculus (A2).

a.

Show that b — Va. (a — b) is a tautology of second-order minimal propo-
sitional logic.

(5 points)

. What is the A2 term that corresponds to the proposition in question 6a.

(NB: you do not need to give the X2 term that corresponds to the proof.)
(3 points)

. Given that b has type *, what is the type of lla : *. (a — b).

(3 points)
Give the A2 derivation of the type judgment
b:x F x:0
(You will find the X2 type derivation rules on the next page.)
(3 points)
Give the A2 derivation of the type judgment
b:x,a:x Fa—b:x

(You may abbreviate type derivations that are answers to earlier questions
in the style:
6d

b:x F x:0 )
(3 points)

Give the A2 derivation of the type judgment that corresponds to your
answer to question 6c.

(3 points)

The final note is (the total amount of points plus 10) divided by 10.



Derivation rules of the Pure Type Systems AP and A2

In these rules the variable s ranges over the set of sorts {*,0}. The product

rule differs between AP and A2.

azxiom —
Fx:0

'FM:MIz:A.B

'EFN:A

application

I' - MN : B[z := N]

. z:A+-M:B
abstraction

I'FIz:A.B:s

I'FX:AM:llz: A.B

'k A:
product (AP) i

,z:AF B:s

I'-A:s

I'Iz:A.B:s

I'z:AF B:x

product (22)

FFIz: A B:+*

'HA:B 'EC:s

weakening T,2:CF A:B
bl I'-A:s
variable e
INz:ArFz: A
. '+-A:B +B:s
conversion where B =g B’

' A:B!




