Tentamen Toegepaste Logica

20 april 2001

Answers may be given in Dutch or English. Good luck!

Exercise 1. This exercise is concerned with first-order minimal propositional logic and λ^{\rightarrow} (simply typed λ -calculus).

- a. Show that the formula $(A \to A \to B) \to A \to B$ is a tautology of first-order minimal propositional logic.
 - (5 points)
- b. Give the (formal) type derivation in simply typed λ -calculus corresponding to the proof of 1a.
 - (5 points)
- c. Give a proof of $A \to (B \to B) \to A$ with a detour, and with all assumptions cancelled.
 - (5 points)
- d. Give the typing derivation corresponding to the proof of 1c, and reduce the term to β -normal form.
 - (5 points)

Exercise 2. This exercise is concerned with first-order minimal predicate logic and λP (λ -calculus with dependent types).

- a. Show that the formula $(\forall x.(P(x) \to Q(x))) \to (\forall y.P(y)) \to \forall z.Q(z)$ is a tautology of first-order minimal predicate logic.
 - (5 points)
- b. Give the typing derivation in λP that corresponds exactly to the proof of 2a
 - (5 points)
- c. Explain the encoding of algebraic terms of first-order minimal predicate logic in λP in detail.
 - (5 points)

d. The application rule of λP (in a slightly informal form) is

$$\frac{F:\Pi x{:}A.\,B}{F\,M:B[x:=M]}$$

Explain the correspondence between this rule and (two) rules of first-order predicate logic according to the Curry-Howard-De Bruijn isomorphism. (5 points)

Exercise 3. This exercise is concerned with second-order minimal propositional logic and $\lambda 2$ (λ -calculus with polymorphic types).

a. Suppose we have a constructor Polylist such that Polylist a is the type of finite lists of terms of type a, for every a.

For finite lists of natural numbers we have a function

$$\mathsf{natmap} : (\mathsf{Nat} \to \mathsf{Nat}) \to \mathsf{Natlist} \to \mathsf{Natlist}$$

with specification

$$\begin{array}{lll} \operatorname{natmap} f \operatorname{nil} & = & \operatorname{nil} \\ \operatorname{natmap} f \left(\operatorname{cons} h \, t \right) & = & \operatorname{cons} \left(f \, h \right) \left(\operatorname{natmap} f \, t \right) \end{array}$$

What is the type of a polymorphic version polymap of natmap? (5 points)

- b. Explain the encoding of formulas of second-order minimal propositional logic in $\lambda 2$ in detail.
 - (5 points)
- c. Give the schematic form of the detours in second-order minimal propositional logic.
 - (5 points)
- d. Consider the two product rules of $\lambda 2$ from its formal typing system:

$$\frac{\Gamma \vdash A : \star \qquad \Gamma, x : A \vdash B : \star}{\Gamma \vdash \Pi x : A . B : \star} \qquad \frac{\Gamma \vdash A : \Box \qquad \Gamma, x : A \vdash B : \star}{\Gamma \vdash \Pi x : A . B : \star}$$

Do for each rule the following: explain briefly what it means and illustrate its use by means of an example.

(5 points)

Exercise 4. This exercise is concerned with Gödel's **T**. Besides the rule for β -reduction we also use the rules for the recursor for natural numbers:

$$\begin{array}{ccc} \operatorname{r_{Nat}}(N,F,\mathbf{z}) & \to & N \\ \operatorname{r_{Nat}}(N,F,\mathbf{s}(P)) & \to & F\operatorname{r_{Nat}}(N,F,P)\,P \end{array}$$

Here $N: \mathsf{Nat}, F: \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{Nat}$, and $P: \mathsf{Nat}$. We suppose we have defined a term plus that implements addition of two natural numbers. We want to define a term mul implementing multiplication of two natural numbers.

- a. Formulate the two requirements on the term mul (Use plus and use recursion in the first argument of mul.)
 - (5 points)
- b. Show that the term

$$mul = \lambda m$$
:Nat. λn :Nat. $r_{Nat}(z, \lambda x)$:Nat. λy :Nat. plus x, n, m

satisfies the specification given in 4a. (Give the reduction in detail.) (5 points)

Exercise 5.

- a. Explain briefly what program extraction is.
 - (5 points)
- b. Give an example of a formula that is a tautology of classical first-order logic, but not a tautology of intuitionistic first-order logic.
 - (5 points)

Exercise 6.

- a. Give and explain the definition of an inductive type natlist of finite lists of natural numbers in Coq. (The type nat of natural numbers may be used.)
 - (5 points)
- b. Give and explain the definition of an inductive predicate even of type $\mathtt{nat} \to \mathtt{Prop}$ in Coq. (The natural numbers are built using the constructors 0 for zero and S for successor.)
 - (5 points)

Het tentamencijfer is (het totaal aantal punten plus 10) gedeeld door 10.