Answers to Exercises Toegepaste Logica 99-00
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2. a. Three possible ways to extend intuitionistic logic to classical logic are
as follows:
i. Add the double negation rule:
_|_|A_
A

ii. Add AV —A as an axiom.



b.
(a)
(b)
3. a
z : Nat

iii. Add Peirce’s Law: ((A—»B)—A)— A as an axiom.

Formulas in minimal logic correspond to types of simply typed lambda
calculus as follows:
e 3 propositional variable corresponds to a type variable,

e the connective — corrseponds to the type constructor —, so a
formula of the form A— B corresponds to the type A—B.

Proofs in minimal logic correpond to type derivations in simply typed
lambda calculus as follows:

e an assumption corresponds to a type variable,
e implication introduction corresponds to abstraction,
e implication elimination corresponds to application.

A detour in minimal logic corresponds to a beta-redex in simply typed
lambda calculus. Elimination of a detour corresponds to a beta-
reduction step according to the beta-reduction rule: (Az:A. M) N —g
Mz := N].

A type A is said to be inhabited if there is a term M with M : A.
The inhabitation problem is the question whether, given a type A,
a closed term M exists with M : A. This question corresponds in
minimal logic to the question whether the formula A is a tautology.
So inhabitation corresponds to provability.

Type checking: is P a term of type A? The corresponding question
in minimal logic is proof checking: is P a proof of the formula A?
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. Az:A. (M z) -, M with z not free in M.

. A type variable b is of the form A;—...—>A,—b, withn =0. If B
is of the form B;— ... —B;—b with b a type variable, then A—B is
of the form A—B;— ... —>By—b with b a type variable.

. See page 45.

Inductive natlist : Set := nil : natlist |
cons : nat -> matlist -> mnatlist

Here a new Set is declared with name natlist. Its constructors are
nil and cons. It is an inductive definition, that is, natlist is the
smallest set that contains nil and is closed under the use of cons.

. The type of natlistiyg is

(P : natlist -> Prop)

( P nil ) ->

(1 : natlist) (P 1) -> (n : nat) (P (cons n 1))) ->
(1 : natlist) (P 1)

. If a property P holds for the empty list, and we have the following;:
if the property P holds for the list 1 and then it holds for the list
consnl for evry natural number n, then the property P holds for
every list 1

. A type A is interpreted as the set of strongly normalizing terms of
type A.

. The proof proceeds by induction on the derivation of M : B. See
page 57.

. We assume a base type Terms. Then a function symbol f of arity n is
represented by a distinguished variable f of type Terms— ... —Terms—Terms
with n 4+ 1 times Terms.

. Also here we assume a base type Terms (the same as in a). Then a
predicate symbol r of arity n is interpreted as a distinguished variable
r of type Terms— ... —Terms—x with n times Terms.



e A formula of the form r M; ... M,, corresponds to a type of the
form r My ... M, with r the predicate symbol interpreted as a
variable.

e A formula of the form A— B corresponds to a type Ilz:A. B.

e A formula of the form Vz. A corresponds to a type Ilz:Terms. A.

. The universe Set corresponds to x. The universe Prop corresponds
to x. The universe Type corresponds to [I.

. The conversion rule is necessary because types may contain terms.
This is for instance the case in Natlist ((Az:Nat. z)5). With the con-
version rule, this type can be used as the type Natlist 5.

. The identity functions Az:Nat.z on natural numbers and A\z:Bool. z
on booleans both do the same thing namely nothing. It is then handy

to have to define this function only once instead of twice. This can
be done by defining a polymorphic identity function: Aa: % . Azx:a.x.
From this polymorphic identity function we can obtain the identity on
natural numbers by applying it to Nat as follows: (Aa: * . Az:a. z) Nat —g
Az:Nat. z and the identity on booleans by applying it to Bool as fol-
lows: (Aa: x. Az:a. z) Bool =5 Az:Bool. z.

. Program extraction is the technique to extract a program or algo-
rithm from the correctness proof of a specification. For instance, the
specification of a sorting algorithm is that for every list [ a list /'
exists such that [’ is ordered and moreover I’ is a permutation of /.
Program extraction yields from the proof of correctness of a spec-
ification an algorithm that transforms a list / into a list I’ that is
ordered and that is moreover a permutation of [.

. The tactic Program is used to do something like the opposite of pro-
gram extraction. A program is converted into a skeleton of a proof
of its correctness. The tactic generates the goals that remain to be
proved.



