HERTENTAMEN

Kansrekening en Statistiek -4I

Wednesday 31 August 2005

Instructions

- Write your name and studentnumber on every page
- Motivate all answers clearly
- Use of a calculator will not be necessary and is not allowed
- Use of Rice's book is allowed
- If you finish the exam early, hand in your work and leave quietly
- Do not attempt to cheat or confer with your fellow students

```
Points per question (Grade = total/8 + 1)
```

```
      1(a):
      5
      2(a):
      5
      3(a):
      5

      1(b):
      5
      2(b):
      5
      3(b):
      5

      1(c):
      5
      2(c):
      6
      3(c):
      * 5

      1(d):
      6
      2(d):
      5
      3(d):
      5

      3(e):
      5

      3(f):
      5
```

Good luck!

[DO NOT TURN THIS PAGE UNTIL SO INSTRUCTED]

PROBLEM 1

Let X in \mathbb{R} be continuously distributed with probability density function $f_X : \mathbb{R} \to \mathbb{R}$ of the form:

$$f_X(x) = \begin{cases} Cx^2(2-x)^2, & \text{if } 0 \le x \le 2, \\ 0, & \text{if } x < 0 \text{ or } x > 2. \end{cases}$$

- a. (5 points)

 Calculate the normalization constant C.
- b. (5 points)Show that E(X) = 1.
- c. (5 points) Show that the second moment $E(X^2)$ satisfies

$$E(X^2) = \frac{128}{105}C,$$

and, using your answer under part a., show that Var(X) = 8/7.

d. (6 points)

Give the distribution function $F_X : \mathbb{R} \to [0,1]$ of X.

Based on your answer, demonstrate that the median of X equals 1.

PROBLEM 2

Let X, Y be two continuous random variables, jointly distributed according to a joint probability density function $f_{XY}: \mathbb{R}^2 \to \mathbb{R}$,

$$f_{XY}(x,y) = \begin{cases} Ce^{-\lambda(x+y)}, & \text{if } x \ge 0 \text{ and } y \ge 0, \\ Ce^{-\lambda(x-y)}, & \text{if } x \ge 0 \text{ and } y < 0, \\ Ce^{-\lambda(-x+y)}, & \text{if } x < 0 \text{ and } y \ge 0, \\ Ce^{\lambda(x+y)}, & \text{if } x < 0 \text{ and } y < 0. \end{cases}$$

depending on a parameter $\lambda > 0$.

a. (5 points)

Calculate the normalization constant C

(NB: your answer will be an expression involving λ).

b. (5 points)

Show that the marginal probability density function $f_X : \mathbb{R} \to \mathbb{R}$ for X has the following form:

$$f_X(x) = egin{cases} rac{\lambda}{2} \, e^{-\lambda \, x}, & ext{if } x \geq 0, \ rac{\lambda}{2} \, e^{\lambda \, x}, & ext{if } x < 0. \end{cases}$$

c. (6 points)

Show that the random variables X and Y are independent (motivating your answer by an equality of probability density functions).

What relation does the independence of X and Y provide between Var(X+Y), Var(X) and Var(Y)?

d. (5 points)

Show that:

$$Var(X+Y) = \frac{4}{\lambda^2}.$$

(NB: You may use that $\int_0^\infty u^n e^{-u} du = n!$.)

PROBLEM 3

Consider an experiment in which we measure X, a random variable with a distribution depending on an unknown parameter $\kappa > 0$. The probability density function $f_{\kappa} : \mathbb{R} \to \mathbb{R}$ for X is given by:

$$f_{\kappa}(x) = \begin{cases} 0, & \text{if } x < 0, \\ \frac{1}{\kappa\sqrt{\pi}} x^{-1/2} e^{-\frac{x}{\kappa^2}}, & \text{if } x \ge 0. \end{cases}$$

Assume that we have an *i.i.d.* sample X_1, X_2, \ldots, X_n of repeated measurements of X. Parts a and b of this problem concern the moment estimator for κ .

a. (5 points)

By partial integration, show that:

$$\int_0^\infty x^{1/2} e^{-x/\kappa^2} dx = \frac{\kappa^2}{2} \int_0^\infty x^{-1/2} e^{-x/\kappa^2} dx.$$

Use this equality to show that $E(X) = \kappa^2/2$.

b. (5 points)

Give the first moment equation and derive the form of the moment estimator $\tilde{\kappa}$ for the parameter κ .

Indicate clearly in which step of your derivation the restriction $\kappa > 0$ plays a role.

Next, we turn to the maximum-likelihood estimator of κ . As it turns out, it is conventient to use, instead of κ itself, its square $\theta = \kappa^2$ as a parameter. This does not change the probability density functions in the model, only the parametrization. To obtain the maximum-likelihood estimator for κ , we shall solve the maximum-likelihood problem for θ first and then derive the maximum-likelihood estimator for κ .

c. (5 points)

What is the domain of the new parameter θ ?

Give the form for the probability density function $f_{\theta} : \mathbb{R} \to \mathbb{R}$ parametrized by the parameter θ .

Also give the log-likelihood $\ell(\theta)$ based on the *i.i.d.* sample X_1, \ldots, X_n .

d. (5 points)

Write down the first derivative $\dot{\ell}(\theta)$ of $\ell(\theta)$ with respect to θ .

Solve the equation $\ell(\theta) = 0$ to show that the maximum-likelihood estimator $\hat{\theta}$ for θ equals:

$$\hat{\theta}(X_1,\ldots,X_n)=2\bar{X}.$$

e. (5 points)

Based on part d., give the maximum-likelihood estimator $\hat{\kappa}$ for κ .

Explain your answer clearly.

(Hint: this does not require any calculation: extrema of a function are parametrization-invariant.)

f. (5 points)

Is the maximum-likelihood estimator $\hat{\theta}$ for θ biased or unbiased? Can we conclude from this that the maximum-likelihood estimator $\hat{\kappa}$ for κ is baised/unbiased?