
OPEN BOOK EXAM Statistics for High-Dimensional Data,

27th May, 2014

May 20, 2014

Instructions:
- Write clearly. Scribbles will not be deciphered.
- Do no give ambiguous answers.
- Finish in time!

You are allowed to use background material, including slide hand-outs, etc. Computers are not
allowed. Good luck!

1. FDR
Let f(p) be the density of p-values for a given study. Often, the following mixture model is
used to model f(p):

f(p) = p0f0(p) + p1f1(p) (1)

(a) Explain the various quantities: p0, p1, f0(p) and f1(p).

(b) Why is it reasonable to assume f1(1) = 0 and how can this be used to estimate p0?

(c) Suppose the p-values result from a discrete test statistic (e.g. Wilcoxon two-sample rank
test). To estimate bFDR = p0F0(p)/F (p), often F0(p) = p, 0 ≤ p ≤ 1 is used. Why
is this conservative (overestimation of FDR) when such a discrete test statistic is used
and how can this be improved?

2. Ridge regression
A researcher is interested in the post-transcriptional regulation of an mRNA by two mi-
croRNAs. Here microRNAs are small molecules, also part of the RNA, that may affect the
expression of mRNA genes. The researcher has conducted a small experiment measuring the
expression levels of these three entities. The data are given in the table below.

(a) Write down the linear regression model that explains the expression levels of the mRNA
by those of the two microRNAs. In this ignore the intercept and assume that the error
has mean zero and unit variance.

(b) Derive the loss function associated with ridge penalized maximum likelihood estimation
for the model of part a) of this question.

(c) Optimize the loss function of part b) of this question with respect to the regression
coefficients. In this set the ridge penalty parameter λ2 equal to 6.
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Observation mRNA microRNA 1 microRNA 2

1 −1 1 1
2 2 −1 2
3 0 1 1
4 1 0 −2

(d) Instead of the traditional ridge penalty, now augment the maximum likelihood loss
function with the following modified ridge penalty:

1

2
λ2(β − 12×1)

T(β − 12×1),

where β is the regression coefficient vector. What is the effect of this penalty? In
particular, explain how it differs from the traditional ridge penalty considered above.

3. Classification
A researcher wants to build a classifier for recurrence of a tumor from microarray data. The
final classifier should be implemented on a low-dimensional platform, which measures 20
genes maximally.

(a) The researcher uses a single 2/3 - 1/3 training-test split of the samples. Below you find
the predicted probability of recurrence given the microarray data X, p(Y = 1|X), and
the actual event (Y = 1: yes, recurrence; Y = 0: no recurrence). Estimate the Brier
score on the test samples.

Y 0 0 0 0 0 1 1 1 1 1
p(Y = 1|X) 0.36 0.43 0.21 0.48 0.41 0.67 0.73 0.52 0.98 0.87

(b) Also estimate the accuracy of the classifier above, when cut-off 0.5 is used. The re-
searcher is very happy with this accuracy and wants to publish it. Would you rec-
ommend to do so, and if not, what extra actions with the data at hand would you
recommend before drawing conclusions?

(c) When selecting patients for the study the researcher deliberately balanced the number of
recurrences and the number of non-recurrence (so, the same number of microarrays for
both groups). In practice, however, it is known that 80% of patients show a recurrence.
What is the advantage of the strategy chosen by the researcher with respect to a strategy
which would have followed the population-based prevalence of recurrence? What is the
disadvantage of this strategy when estimating accuracy and how should the researcher
re-calibrate this estimate?

(d) Another researcher tries to reproduce the results using a new data set. She uses the
same microarray technology, the same classification procedure and DNA material from
patients of the same population. Yet, the set of features selected by the classification
procedure (probes on the array) overlaps little with the original set. What could be the
cause of that?

4. Zero-inflation (ShrinkBayes)
Consider

Yj ∼ ZI-NB(p0, µj , φ) = p0δ(0) + (1− p0)NB(µj , φ), j = 1, . . . , n
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(a) What are the mean and variance of this random variable? Hint: condition on whether
Yj comes from the first component of the mixture (which happens with probability p0)
or not.

(b) Why would edgeR generally result in larger estimates of φ than ShrinkBayes for data
rows (e.g. genes) with fairly many zeros?

5. Mixture priors, empirical Bayes
Suppose Yij ∼ F (αi,βi), i = 1, . . . , p, j = 1, . . . , n. Here, α is the main parameter of interest
and βi are the other ones. In a Bayesian context one often uses a simple conjugate prior for
αi to obtain its posterior either analytically or via computationally efficient methods.

(a) Give two reasons why, in a high-dimensional context, a mixture prior with components
that are of the same parametric form as the original conjugate prior is a very useful
alternative.

(b) Suppose one would use such a mixture prior for αi. Express the posterior of αi in
terms of the mixture proportions and the results obtained under each of the mixture
components.

(c) An alternative is to use a completely non-parametric prior for αi. Suppose sample size
is small and in reality a very large proportion of αi’s are close to 0. Do you think it is
wise to use a nonparametric prior in such a case?
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