Faculteit der Exacte Wetenschappen	Introduction Partial Differential Equations
Afdeling Wiskunde	18-8-2010, 15:15-18:00
Vrije Universiteit	Hertentamen

Grading: Each item in 1 and 2 one point. Exercises 3, 4 and 5 one point each. Total 12 (2 bonus points). Your grade: a weighted average of your total score and your overall home work score, truncated at 10. Maximal weight homework: $\frac{1}{5}$.

1. This exercise concerns various techniques for the problem

$$-u''(x) = f(x) \quad (0 \le x \le \pi), \quad u(0) = u(\pi) = 0. \tag{1}$$

a) Derive a solution formula of the form

$$u(x) = \int_0^{\pi} G(x, y) f(y) dy$$

for the problem in (1). This requires you to determine explicitly the Green's function G(x, y).

b) Derive the Fourier sinus series expansion for

$$f(x) = 1 \sim \sum_{n=1}^{\infty} a_n \sin nx, \qquad x \in [0, \pi].$$

and apply Parceval's identity for $\int_0^{\pi} f(x)^2 dx$ to derive an expression for

$$\sum_{n=1}^{\infty} a_n^2.$$

- c) Let u be the solution of the problem in (1) with f(x) = 1. Derive the Fourier sinus series expansion of u, and evaluate the sum in $x = \frac{\pi}{2}$.
- d) (bonus) Assuming u and f smooth, multiply the equation in (1) by a smooth function v with $v(0) = v(\pi) = 0$, integrate and derive that there are two inner products $((\cdot, \cdot))$ and (\cdot, \cdot) such that

$$((u,v)) = (f,v).$$

e) (bonus) We say that ϕ is an eigenfunction with real eigenvalue λ if $u = \phi$ is a solution of the problem in (1) with $f = \lambda \phi$. Show that different real eigenvalues λ and μ have eigenfunctions ϕ and ψ with

$$\int \phi(x)\psi(x)dx = 0.$$

2. Let N > 1. For a smooth function $\Psi : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ of the form $\Psi(x_1, \dots, x_{\mathbb{N}}) = R(r)$, with $r^2 = x_1^2 + \dots + x_{\mathbb{N}}^2$, the Laplacian is given by

$$\Delta\Psi = \frac{d^2R}{dr^2} + \frac{N-1}{r}\frac{dR}{dr} = \frac{1}{r^{N-1}}\frac{d}{dr}(r^{N-1}\frac{dR}{dr})$$
 (2)

If $\Psi(1,\ldots,x_{\mathrm{N}})=R(r)$ is a smooth solution of $\Delta\Psi+\Psi=0$, then

$$R(r) = \sum_{n=0}^{\infty} a_n r^n.$$

- a) For N = 2 you have seen that $(n+2)^2 a_{n+2} + a_n = 0$. Derive the recurrence relation for general N > 1.
- b) Explain why $a_1 = 0$ and why there is only one smooth solution of

$$\frac{1}{r^{N-1}}\frac{d}{dr}\left(r^{N-1}\frac{dR}{dr}\right) + R = 0. \tag{3}$$

with R(0) = 1. Denote this solution by J(r).

Signatur Militari

- c) The solution J(r) above is defined for all r. The dependence on N is suppressed in the notation. This nice function is oscillating and has a countable sequence of zero's $r_1 < r_2 < r_3 < \cdots \rightarrow \infty$. What is this solution in the special case that N=1?
- 3. Let $B = \{(x, y, z) : x^2 + y^2 + z^2 \le 1\}$ be the unit ball in \mathbb{R}^3 . In this exercise we consider the damped wave equation

$$u_{tt} + bu_t = \Delta u \tag{4}$$

for functions u(x, y, z, t) defined on $B \times \mathbb{R}$ with boundary condition u = 0 on $\partial B \times \mathbb{R}$. Here b is a positive parameter. Separate the time variable from the spatial variables by putting $u(x, y, z, t) = T(t)\Psi(x, y, z)$ and derive that Ψ must be a solution of the Helmholtz equation

$$\Delta \Psi + k \Psi = 0 \text{ on } B \text{ with } \Psi = 0 \text{ on } \partial B,$$
 (5)

where k is still to be determined. Give the corresponding differential equation for T(t). What is the condition on b and k needed to have oscillating solutions T(t)?

4. Let $\Omega \subset \mathbb{R}^{\mathbb{N}}$ be open and connected. It was proved in the course that a continuous function $u:\Omega \to \mathbb{R}$ which satisfies

$$u(x_0) = \frac{1}{|B_r(x_0)|} \int_{B_r(x_0)} u(x) dx$$

for all closed balls $B_r(x_0)$ (with center x_0 and radius r) in Ω , is in fact smooth and satisfies $\Delta u = 0$ in Ω . Here $|B_r(x_0)| = \int_{B_r(x_0)} 1 dx$ is the N-dimensional measure of $B_r(x_0)$. Show that if such a harmonic function u is nonnegative on Ω , and $u(x_0) = 0$ for some $x_0 \in \Omega$, then u(x) = 0 for all $x \in \Omega$.

5. Use polar coordinates $(x = r \cos \phi, y = r \sin \phi)$ to solve $-\Delta u = 1$ on the unit disk, with u(x, y) = xy on boundary circle $x^2 + y^2 = 1$.