Midterm exam

Afdeling Wiskunde

Introduction Partial Differential Equations for students Mathematics and Physics

Faculteit der Exacte Wetenschappen Vrije Universiteit Amsterdam

Date: Tuesday October 26 2004, 13:30-15:30 (2 hours)

Instructions: 4 problems; motivate all answers. No calculators, no books, no formula sheets.

1. (a) Determine the type of the following partial differential equations:

$$u_{xx} + 2u_{xy} + u_{yy} + u_y = 0$$
, $yu_{xx} - 2u_{xy} + e^x u_{yy} + u = 3$.

- (b) Show that the equation $5u_{xx} + 4u_{xy} + 4u_{yy} = 0$ is elliptic and find a coordinate transformation to put the equation into canonical form.
- 2. (a) Determine the general solution of the following first order equation

$$u_x + u_y + u = 0.$$

- (b) Find the solution that matches the initial condition $u(0,y) = e^y$.
- 3. Consider the elliptic equation $\Delta u u_x u_y = f(x, y)$
 - (a) Formulate the maximum principle for the above equation.
 - (b) Show that $u(x,y) = e^x + e^y \frac{1}{2}x \frac{1}{2}y$ is a solution for f(x,y) = 1.
 - (c) Let $\Omega = \{(x,y) : 0 < x < 1, 0 < y < 1\}$, and consider the above equation with the boundary condition u = 0 on $\partial \Omega$, and f(x,y) = 1. Use the maximum principle to show that -1 < u < 1 on the region Ω (Hint: Consider the Dirichlet problem for v = u + x).
- 4. Given the function $f(x) = x^2$.
 - (a) Calculate the cosine Fourier series of x^2 on $[0, \pi]$.
 - (b) Determine the full Fourier series of x^2 on $[-\pi, \pi]$.

The cosine Fourier series for f are $\sum_{n=0}^{\infty} a_n \cos(nx)$, $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx$, $n \geq 1$, and $a_0 = \frac{1}{\pi} \int_0^{\pi} f(x) dx$.

The Fourier series for f are $\frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right]$, $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$, and $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx)$.