
Department Computer Science Distributed Systems
Vrije Universiteit 24.10.2006
1a Explain the difference between request-level and message-level interceptors. 5pt

1b Sketch the general organization of a self-managing distributed system as a feedback-control loop.
Explain the various aspects of this organization. 5pt

2a Explain the difference between a process virtual machine and a virtual machine monitor. 5pt

2b Give an example illustrating that a multithreaded client can improve distribution transparency in
comparison to a single-threaded client. 5pt

Just think of a client communicating with an actively replicated server. Obviously, by executing the
(assumed synchronous) calls simultaneously we can improve the response time in comparison to
calling each replica one at a time. The parallel call mimics the behavior of synchronously calling a
single server.

2c Active replication generally requires totally ordered message delivery. Is this condition sufficient in
the case of actively replicated multithreaded servers? Explain your answer. 5pt

No. The problem is that although messages are delivered in the correct order to the server, we also
need to guarantee that they are processed in the same order. In a multithreaded server, this means
that thread scheduling needs to be deterministic as well: all threads are scheduled in the same order
at every server.

3a Explain the relationship between a node identifier and a key in Chord. 5pt

Node identifiers and keys are assumed to be drawn from the same m-bit identifier space. For a given
key k, the node with the smallest identifier id ≥ k is responsible for handling whatever is associated
with key k.

3b In Chord, the finger table for node p is defined by FTp[i] = succ(p+2i−1). Assume a 32-bit identifier
space and consider the following finger table for node 18. Explain to where node 18 forwards a
lookup request for the following keys: k = 26,20,18,17,29. 5pt

FT18 = [20,20,28,28,4]

The requests are forwarded, respectively to: 20, 20, 18, 4, and 28.
3c Explain how a node (with unique identifier p) can easily join a Chord ring. 5pt

It is important that you note that we assume that p knows at least one node of the Chord system, say,
q. It then simply sends a lookup request for succ(p + 1) to q, that is, it requests lookup(p+1). This
will return the node with smallest id ≥ p + 1, which will be the successor of p in the ring. If that
node keeps track of its predecessor, insertion is then straightforward.

4a What is meant by sequential consistency? 5pt

This type of consistency prescribes that if we consider a collection of concurrently executing pro-
cesses that share a data item x, that the order of operations on x as specified by each program that is
executed by the processes is respected, and that the effect of all operations as seen by every process
are consistent with a serial execution of one program after the other.

4b What is the most important effect in terms of performance when using synchronization variables?
Explain your answer. 5pt

The most important effect is that multiple read and write operations can be performed by a single
process without the need for synchronization with other processes. The result is a performance
improvement as there is no need for communication as long as the rules for accessing and modifying
synchronization variables are respected.



4c Explain why entry consistency and distributed objects form a natural match. 5pt

Entry consistency is all about associating synchronization variables with a group of data. This is
exactly what objects actually do. By guaranteeing that object invocations are atomic, we actually
provide entry consistency in a way that naturally matches the logical organization of data by objects.

4d Consider a system in which remote objects are replicated and which guarantees entry consistency.
To that end, all method invocations are multicast systemwide in a totally ordered fashion. Does this
implementation provide stronger consistency guarantees? Explain your answer. 5pt

In fact, it does. Where entry consistency requires total ordering of operations per (replicated) ob-
ject, totally ordered multicast of all invocations effectively guarantees sequential consistency at the
granularity of method invocations.

5a Explain by means of the following diagram, how A can estimate the offset of its clock relative to that
of B. 5pt

A

B

T1

T2 T3

T4

dTreq dTres

A will have to send a message timestamped with T1 to B. B will record T2 as well as its transmission
time T3, which are both put into the response. At T4 A can compute its offset as

θ =
(T2 −T1)+(T4−T3)

2

5b Suppose that in the previous figure, we cannot assume that dTreq ≈ dTres, as is often the case in
wide-area networks. How does this affect the accuracy of A’s estimation? 5pt

Go for extremes, and you will see what happens. With dTreq being very small and dTres very large,
then the long time it takes for the response to make it back to A, will make A believe its clock offset
is very large. In fact, this is not the case. If the request took very long to reach B, while the reponse
was returned in a jiffy, A will come to the conclusion that its offset is relatively low.

6a Akamai’s CDN deploys replication of documents through standard Web proxy caching techniques.
Explain how Akamai does this replication. 10pt

It boils down to explaining Fig. 12-20.
6b What is strongest kind of consistency would you argue that Akamai provides. Explain you answer! 5pt

First, it is important to note that updates are always carried out through an origin server. This
means that there are no write-write conflicts. Second, because updates lead to modifying the name
of an embedded document, and because each initial request is always forwarded to the origin server,
clients will, in principle, never get to see a stale document. Therefore, it can be argued that Akamai
provides data-centric consistency, and notably sequential consistency at the granularity of whole-
document updates. Anther acceptable answers are continuous consistency with no deviations in
value, time, and ordering. However, mentioning client-centric consistency is just too weak (although
strictly correct): it provides systemwide consistency. Note that these consistencies become weaker if
the main page is allowed to be cached.

6c To support replication of Web applications, a CDN can deploy content-aware caching. Explain how. 5pt

When deploying a content-aware cache, an edge server or proxy cache server assumes that queries
sent to the origin server adhere to only a limited number of templates. This allows the server to
store the results of queries in a local cache such that it can easily see whether a next query can be
answered from local data only. For example, a query for selecting all elements in a range [0,100]
returns an answer that can also be use to answer a query for all elements in a range [10,90].

2



Grading: The final grade is calculated by accumulating the scores per question (maximum: 90 points), and
adding 10 bonus points. The maximum total is therefore 100 points.

3


