Dept. Comp. Sc. Vrije Universiteit

Distributed Systems 20.12.2005

Part I

This part covers the same material as the midterm exam.

1a Explain the principal working of a remote procedure call (RPC).

5pt

1b Give two compelling arguments why an RPC can never provide the same semantics as a local procedure call.

5pt

1c What is the main difference between a remote method invocation (RMI) and an RPC?

5pt

2a Imagine a file server keeping a table of (client, file)-pairs, identifying which clients accessed which files. Is this a stateful server? Morivate your answer.

5pt

2b Explain what a message-queuing server is and whether it can be designed to be stateless.

5pt

2c The X Window system refers to the X kernel running on the client machine as the "X server", and the application running on the compute server, as the "X client." Why is this actually a correct usage of client/server terminology?

5pt

3a Consider a client that attempts to synchronize its clock with that of a time server once every minute. It sends a number of requests, with the results shown below. How will the client adjust its clock after receiving a response? Time is given in (hr:min:sec:msec). Processing time at the server is zero.

5pt

Sent at (local time)	Round-trip delay	Response
10:54:00:00	18 ms	10:54:00:10
10:55:00:00	24 ms	10:55:00:12
10:56:00:00	22 ms	10:55:00:10

- 3b Explain the principle of the Berkeley algorithm for adjusting the clocks in a distributed system.
- 5pt
- 3c The communication layer in distributed systems can keep track of causally related messages. What are two major objections against this functionality?

5pt

Part II

4a Is the following sequence of events allowed with a sequentially-consistent store? What about a causally-consistent data store? Explain your answer.

5pt

P1: W (x)a			W(x)c		
P2:	R(x)a	W(x)b			
P3:	R(x)a			R(x)c	R(x)b
P4:	R(x)a			R(x)b	B(x)c

4b Explain why writes-follow-reads consistency guarantees that causal relations are maintained when used for the implementation of a distributed news system.

5pt 5pt

- 4c What are the conditions to prevent read-write and write-write conflicts in a quorum-based system.
- 5a Show that with 4 processes of which one is faulty, that 3 processes can come to an agreement irrespective of the message communicated by the faulty process.

5pt

5b	Consider a print server with three possible events: (M) notify the client that printing is done; (P) print; (C) crash. When a client is notified that the print server has just recovered from a crash, it can follow 4 different strategies: (1) Never reissue the print request, (2) Always reissue the print request; (3) Reissue only if the delivery of the print request has not been acknowledged; (4) Reissue only when delivery of the request has been acknowledged. Show that if the server always notifies the client after printing, it is impossible to devise a scheme in which the print job is never lost or never				
	duplicated.	10pt			
	NFS is arguably not a file system. Explain why.	5pt			

Coda allows clients to cache files, but sends invalidation messages when a file is modified. What is the main reason for doing these callbacks in parallel?
Coda allows a reading client to continue to operate on its local copy, even if a concurrent write takes place at the server. Why is this behavior considered correct?

Final grade: (1) Add, per part, the total points. (2) Let T denote the total points for the midterm exam $(0 \le T \le 45)$; D1 the total points for part I; D2 the total points for part I. The final number of points E is equal to $\max\{T, D1\} + D2 + 10$.