Opgave 1

- (a) Give the definition of a regular expression and of the language generated by a regular expression. [5 pnt.]
- (b) Find a regular expression equivalent to the finite automaton (nfa) given below. [15 pnt.]

Opgave 2

(a) Formulate the pumping lemma for regular languages.

[5 pnt.]

(b) Prove the pumping lemma for regular languages.

[10 pnt.]

(c) Check whether the following languages are regular (explain the answer).

[15 pnt.]

$$L_1 = \{a^n b^m c^k \mid n, m, k \ge 0, n + m < k\},$$

$$L_2 = \{a^n b^m c^k \mid n, m, k \ge 0, k < 3\},$$

$$L_3 = L_1 \cap L_2.$$

Opgave 3

- (a) Give the definition of a nondeterministic pushdown automaton (ndpa) and of the language accepted by a ndpa. [5 pnt.]
- (b) Convert the following grammar to Greibach normal form and give an equivalent push-down automaton. [15 pnt.]

$$S \rightarrow aSbb \mid B$$
$$B \rightarrow bB \mid b.$$

(c) Let a regular language L_1 and a context free language L_2 be given. Show that there exists an algorithm to check whether L_1 and L_2 have a common element. [10 pnt.]

Opgave 4

- (a) Give the definition of a Turing machine with stay-option and of the languages accepted by a Turing machine with stay-option. [5 pnt.]
- (b) Prove that there exists a recursively enumerable language L such that the complement of L is not recursively enumerable. [15 pnt.]

The grade is equal to one tenth of the number of points scored.