Vrije Universiteit Amsterdam Exam Evolutionary Computing 26.11.2003

Note 1 Your name must be written on each sheet in CAPITALS.

Note 2 You can answer the questions in English or in Dutch.

Points to be collected: 62.

Grade: points collected divided by 6.2, rounded up to the first decimal.

- 1. We are to solve the magic square problem with evolutionary computing. The short definition of this problem is as follows. We are given a board of 10 by 10 and we have to place the integers 1 ... 100 on this board in such a way that
 - (a) each integer is placed on the board excatly once,
 - (b) the sum of integeres in a row is the same for each row,
 - (c) the sum of integeres in a column is the same for each column,
 - (d) the sum of integeres in a diagonal is the same for both diagonals.

Your task is to specify an EA suitable for solving this problem. In particular, give

- (a) (4p) a representation, that is, the syntax of the chromosomes (genotypes) and a mapping between chromosomes and board configurations (phenotypes),
- (b) (4p) a fitness function,
- (c) (4p) an appropriate crossover operator,
- (d) (2p) an appropriate mutation operator,
- (e) (2p) an appropriate parent selection mechanism,
- (f) (2p) an appropriate survivor selection mechanism,
- (g) (2p) an initialization method,
- (h) (2p) a stop condition.
- 2. (a) (6p) Name 3 features in which Genetic Programming and Genetic Algorithms differ.
 - (b) **(4p)** The logical operators for negation (\neg) and conjunction (\land) are sufficient to define other Boolean operators, e.g., disjunction (\lor) , implication (\to) , equivalence (\leftrightarrow) . Therefore, the function set $\{\neg, \land\}$ is sufficient to define any Boolean expression. Is the minimal set of operators $\{\neg, \land\}$ as function set prefereable above the set $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ for solving a problem whose solution is a Boolean formula? Give arguments backing up your answer.
- 3. (a) (3p) What is anytime (algorithm) behaviour?
 - (b) (3p) Given an anytime algorithm, is it worth to spend efforts on heuristic initialisation? Give arguments.

¹The EA does not have to be "smart" (efficient). But the representation and the operators should be such that a solution can be found.

- (c) (3p) Given an anytime algorithm, is it worth to spend efforts on "long" runs? Give arguments.
- 4. (a) (4p) Present the general scheme of an evolutionary algorithm and give a list of its most important components.
 - (b) (6p) Choose a component (parameter within a component) and describe a mechanism to change it during a run. To this end:
 - i. Give some motivation why changing this component/parameter can be advantageous.
 - ii. Give a precise description of this mechanism.
 - iii. Characterise this mechanism in terms of the general parameter control taxonomy.
- 5. (a) (4p) Give the definition of Boltzmann selection by providing the formula of accepting a newly generated point (neighbour).
 - (b) (3p) Explain the effect of lowering the "temperature" on the selection pressure (i.e., on the chance that an inferior neighbour is selected).
- 6. (4p) Consider the following statement:

'When comparing two EAs the one with a higher average solution quality is always preferable.'

Is this statement correct or not? Give arguments.