
Department Computer Science Vrije Universiteit

Distributed Systems 22.02.2012

BE SURE THAT YOUR HANDWRITING IS READABLE

1a	Explain Lamport's happened-before relationship and provide a distributed implementation of the associated logical clocks.	5pt
		•
Ib	Give an example of how Lamport's logical clocks can be used to realize distributed mutual exclusion.	5pt
1c	Show by an example that Lamport's clocks cannot generally capture causal relations.	5pt
		•
2a	Explain how TCP-handoff works.	5pt
2b	Sketch a solution for an efficient, content-aware, TCP-handoff.	5pt
2c	How would you realize TCP handoff if the servers are placed in different autonomous systems?	5pt

3

3a Fill in the missing Chord finger table for nodes 1, 9, 14, 20, 28.

5pt

3b Show all hops for the following key lookups for the shown Chord-based P2P system:

5pt

source	key
1	12
9	3
14	20
14	31
- 20	18

3c Explain how node 7 can join the Chord network, assuming it knows only node 21.

5pt

5pt

5pt

- 4a Explain how a content-aware Web cache works by considering the processing of database queries.
- 4b Web-hosting services such as Akamai redirect clients to a best replica server using DNS. Explain, by example, how this redirection works.

4c Provide details on how Web clients can get redirected to a replica server in the case of a flash crowd. 5pt

5 Consider an implementation of numerically bounded continuous consistency. Assume that each write W(x) > 0. Let origin(W) denote the server S_i to which the write operation was submitted first, and $log(S_i)$ the log of server S_i . We assume there are N servers. For data item x, TW[i,j] is defined as

$$TW[i,j] = \sum \{W(x)|origin(W) = S_j \& W \in log(S_i)\}$$

5a	Give an expression for the value $v(x)$ of x assuming its initial value was 0.	5pt
5b	Give an expression for the value of $v_i(x)$ of x at server S_i .	5pt
5c	To be numerically bounded, we demand that $ v(x) - v_i(x) < \delta$. What can a server do to guarantee this constraint?	5pt
6а	Consider a set of N replica servers. Show, by counter example, that for quorum-based replication, the write set needs to be larger or equal to $\lfloor N/2+1 \rfloor$.	5pt
6b	Assuming crash/performance failure semantics, how large must the write set be in the case of quorum-based replication in case we want to survive the failure of k servers?	5pt
6с	Consider the previous question. How large must the read set be?	5pt

Grading: The final grade is calculated by accumulating the scores per question (maximum: 90 points), and adding 10 bonus points. The maximum total is therefore 100 points.