Department Computer Science VU University

Distributed Systems 11.02.2010

MAKE SURE THAT YOUR HANDWRITING IS READABLE

•	5pt
it. 1b Give an example in which the degree of distribution transparency needs to be traded off against another desirable feature of distributed systems.	5pt
another destrable feature of distributed systems. 1c Explain how code migration can help in achieving sclability.	5pt
 2a What is the essential difference between an event-based and a shared data-space architectural style? 2b Shared data spaces are difficult to scale across dispersed networks. Why? 2c Sketch an implementation of a replicated JavaSpace server. 	5pt 5pt 5pt
 3a Give a general framework for a push-pull anti-entropy information dissemination network. 3b Consider an epidemic-based application with N peers in which peer i has a local variable x_i ≥ 0. When peer i gossips with peer j, x_i,x_j ← (x_i + x_j)/2. Show that, eventually, x_i converges to ½ ∑_{k=1}^N x_k. 3c There are two important assumptions we need to make for convergence in (b) to take place. What are these? 	5pt 5pt 5pt
 4a Explain how iterative name reolution in DNS works and why it may incur high latency costs. 4b When resolving name www.distributed-systems.net, DNS will return an address, but not when trying to resolve distributed-systems.net. How can this be? 4c Sketch a Chord-based implementation of DNS. What would you see as the main drawback of such an implementation? 	5pt 5pt 5pt
 5a When applying a primary-backup protocol for replicating a service, we may actually experience a scale down in performance. Why is this so? 5b Consider a quorum-based replication scheme with N servers. Show how inconsistency may be introduced if the write quorum N_{write} ≤ N/2. 5c If the read-write ratio in a quorum-based replication scheme is high, what should the write-quorum N_{write} be? Explain your answer. 	5pt
 6a Web applications can be replicated following an edge-server architecture. What does this architecture look like? 6b In an edge-server architecture, it is important that a client is always redirected to the same edge server. Why? 6c How can a client transparently "discover" its most appropriate edge server? 	

Grading: The final grade is calculated by accumulating the scores per question (maximum: 90 points), and adding 10 bonus points. The maximum total is therefore 100 points.