DISTRIBUTED SYSTEMS
PRINCIPLES AND PARADIGMS

PROBLEM SOLUTIONS

ANDREW S. TANENBAUM
MAARTEN VAN STEEN

Vrije Universiteit
Amsterdam, The Netherlands

PRENTICE HALL

UPPER SADDLE RIVER, NJ 07458

1.

N

SOLUTIONS TO CHAPTER 1 PROBLEMS

Q: What is the role of middleware in a distributed system?

A: To enhance the distribution transparency that is missing in network operat-
ing systems. In other words, middleware aims at improving the single-system
view that a distributed system should have.

Q: Explain what is meant by (distribution) transparency, and give examples
of different types of transparency.

A: Distribution transparency is the phenomenon by which distribution aspects
in a system are hidden from users and applications. Examples include access
transparency, location transparency, migration transparency, relocation tran-
sparency, replication transparency, concurrency (transparency, failure tran-
sparency, and persistence transparency.

Q: Why is it sometimes so hard to hide the occurrence and recovery from
failures in a distributed system?

A: It is generally impossible to detect whether a server is actually down, or
that it is simply slow in responding. Consequently, a system may have to
report that a service is not available, although, in fact, the server is just slow.

Q: Why is it not always a good idea to aim at implementing the highest
degree of transparency possible?

A: Aiming at the highest degree of transparency may lead to a considerable
loss of performance that users are not willing to accept.

Q: What is an open distributed system and what benefits does openness pro-
vide?

A: An open distributed system offers services according to clearly defined
rules. An open system is capable of easily interoperating with other open sys-
tems but also allows applications to be easily ported between different imple-
mentations of the same system.

Q: Describe precisely what is meant by a scalable system.

A: A system is scalable with respect to either its number of components, geo-
graphical size, or number and size of administrative domains, if it can grow in
one or more of these dimensions without an unacceptable loss of perfor-
mance.

Q: Scalability can be achieved by applying different techniques. What are
these techniques?

A: Scaling can be achieved through distribution, replication, and caching.

2
8.

10

11.

12

13

PROBLEM SOLUTIONS FOR CHAPTER 1

Q: What is the difference between a multiprocessor and a multicomputer?

A: In a multiprocessor, the CPUs have access to a shared main memory.
There is no shared memory in multicomputer systems. In a multicomputer
system, the CPUs can communicate only through message passing.

Q: A multicomputer with 256 CPUs is organized as a 16 x 16 grid. What is
the worst-case delay (in hops) that a message might have to take?

A: Assuming that routing is optimal, the longest optimal route is from one
corner of the grid to the opposite corner. The length of this route is 30 hops. If
the end processors in a single row or column are connected to each other, the
length becomes 15.

Q: Now consider a 256-CPU hypercube. What is the worst-case delay here,
again in hops?

A: With a 256-CPU hypercube, each node has a binary address, from
00000000 to 11111111. A hop from one machine to another always involves
changing a single bit in the address. Thus from 00000000 to 00000001 is one
hop. From there to 00000011 is another hop. In all, eight hops are needed.

Q: What is the difference between a distributed operating system and a net-
work operating system?

A: A distributed operating system manages multiprocessors and homogene-
ous multicomputers. A network operating system connects different indepen-
dent computers that each have their own operating system so that users can
easily use the services available on each computer.

Q: Explain how microkernels can be used to organize an operating system in
a client-server fashion.

A: A microkernel can separate client applications from operating system ser-
vices by enforcing each request to pass through the kernel. As a consequence,
operating system services can be implemented by (perhaps different) user-
level servers that run as ordinary processes. If the microkernel has networking
capabilities, there is also no principal objection in placing those servers on
remote machines (which run the same microkernel).

Q: Explain the principal operation of a page-based distributed shared memory
system.

A: Page-based DSM makes use of the virtual memory capabilities of an
operating system. Whenever an application addresses a memory location that
is currently not mapped into the current physical memory, a page fault occurs,
giving the operating system control. The operating system can then locate the
referred page, transfer its content over the network, and map it to physical
memory. At that point, the application can continue.

PROBLEM SOLUTIONS FOR CHAPTER 1 3

14. Q: What is the reason for developing distributed shared memory systems?

15

16

17

18

19

What do you see as the main problem hindering efficient implementations?

A: The main reason is that writing parallel and distributed programs based on
message-passing primitives is much harder than being able to use shared
memory for communication. Efficiency of DSM systems is hindered by the
fact, no matter what you do, page transfers across the network need to take
place. If pages are shared by different processors, it is quite easy to get into a
state similar to thrashing in virtual memory systems. In the end, DSM sys-
tems can never be faster than message-passing solutions, and will generally
be slower due to the overhead incurred by keeping track of where pages are.

Q: Explain what false sharing is in distributed shared memory systems. What
possible solutions do you see?

A: False sharing happens when data belonging to two different and indepen-
dent processes (possibly on different machines) are mapped onto the same
logical page. The effect is that the page is swapped between the two
processes, leading to an implicit and unnecessary dependency. Solutions
include making pages smaller or prohibiting independent processes to share a
page.

Q: An experimental file server is up 3/4 of the time and down 1/4 of the time,
due t0 bugs. How many times does this file server have to be replicated to
give an availability of at least 99%?

A: With k being the number of servers, we have that (1/4)%<0.01, expressing
that the worst situation, when all servers are down, should happen at most
17100 of the time. This gives us k=4.

Q: What is a three-tiered client-server architecture?

A: A three-tiered client-server architecture consists of three logical layers,
where each layer is, in principle, implemented at a separate machine. The
highest layer consists of a client user interface, the middle layer contains the
actual application, and the lowest layer implements the data that are being
used.

Q: What is the difference between a vertical distribution and a horizontal dis-
tribution?

A: Vertical distribution refers to the distribution of the different layers in a
multitiered architectures across multiple machines. In principle, each layer is
implemented on a different machine. Horizontal distribution deals with the
distribution of a single layer across multiple machines, such as distributing a
single database.

Q: Consider a chain of processes Py, Py, ..., P, implementing a multitiered
client-server architecture. Process P; is client of process P;,,, and P; will
return a reply to P;_; only after receiving a reply from P;,;. What are the

PROBLEM SOLUTIONS FOR CHAPTER 1

main problems with this organization when taking a look at the request-reply
performance at process P,?

A: Performance can be expected to be bad for large n. The problem is that
each communication between two successive layers is, in principle, between
two different machines. Consequently, the performance between P and P,
may also be determined by n—2 request-reply interactions between the other
layers. Another problem is that if one machine in the chain performs badly or
is even temporarily unreachable, then this will immediately degrade the per-
formance at the highest level.

1.

&

SOLUTIONS TO CHAPTER 2 PROBLEMS

Q: In many layered protocols, each layer has its own header. Surely it would
be more efficient to have a single header at the front of each message with all
the control in it than all these separate headers. Why is this not done?

A: Each layer must be independent of the other ones. The data passed from
layer k + 1 down to layer k contains both header and data, but layer k cannot
tell which is which. Having a single big header that all the layers could read
and write would destroy this transparency and make changes in the protocol
of one layer visible to other layers. This is undesirable.

Q: Why are transport-level communication services often inappropriate for
building distributed applications?

A: They hardly offer distribution transparency meaning that application
developers are required to pay significant attention to implementing commun-
ication, often leading to proprietary solutions. The effect is that distributed
applications, for example, built directly on top of sockets are difficult to port
and to interoperate with other applications.

Q: A reliable multicast service allows a sender to reliably pass messages to a
collection of receivers. Does such a service belong to a middleware layer, or
should it be part of a lower-level layer?

A: In principle, a reliable multicast service could easily be part of the trans-
port layer, or even the network layer. As an example, the unreliable IP multi-
casting service is implemented in the network layer. However, because such
services are currently not readily available, they are generally implemented
using transport-level services, which automatically places them in the
middleware. However, when taking scalability into account, it turns out that
reliability can be guaranteed only if application requirements are considered.
This is a strong argument for implementing such services at higher, less gen-
eral layers.

Q: Consider a procedure incr with two integer parameters. The procedure
adds one to each parameter. Now suppose that it is called with the same vari-
able twice, for example, as incr(i, i). If i is initially O, what value will it have
afterward if call-by-reference is used? How about if copy/restore is used?

A: If call by reference is used, a pointer to i is passed to incr. It will be incre-
mented two times, so the final result will be two. However, with copy/restore,
i will be passed by value twice, each value initially 0. Both will be incre-
mented, so both will now be 1. Now both will be copied back, with the
second copy overwriting the first one. The final value will be 1, not 2.

6

5.

bed

PROBLEM SOLUTIONS FOR CHAPTER 2

Q: C has a construction called a union, in which a field of a record (called a
struct in C) can hold any one of several alternatives. At run time, there is no
sure-fire way to tell which one is in there. Does this feature of C have any
implications for remote procedure call? Explain your answer.

A: If the runtime system cannot tell what type value is in the field, it cannot
marshal it correctly. Thus unions cannot be tolerated in an RPC system unless
there is a tag field that unambiguously tells what the variant field holds. The
tag field must not be under user control.

Q: One way to handle parameter conversion in RPC systems is to have each
machine send parameters in its native representation, with the other one doing
the translation, if need be. The native system could be indicated by a code in
the first byte. However, since locating the first byte in the first word is pre-
cisely the problem, can this actually work?

A: First of all, when one computer sends byte 0, it always arrives in byte 0.
Thus the destination computer can simply access byte 0 (using a byte instruc-
tion) and the code will be in it. It does not matter whether this is the low-
order byte or the high-order byte. An alternative scheme is to put the code in
all the bytes of the first word. Then no matter which byte is examined, the
code will be there.

Q: Assume a client calls an asynchronous RPC to a server, and subsequently
waits until the server returns a result using another asynchronous RPC. Is this
approach the same as letting the client execute a normal RPC? What if we
replace the asynchronous RPCs with asynchronous RPCs?

A: No, this is not the same. An asynchronous RPC returns an acknowledge-
ment to the caller, meaning that after the first call by the client, an additional
message is sent across the network. Likewise, the server is acknowledged that
its response has been delivered to the client. Two asynchronous RPCs may be
the same, provided reliable communication is guaranteed. This is generally
not the case.

Q: Instead of letting a server register itself with a daemon as is done in DCE,
we could also choose to always assign it the same endpoint. That endpoint
can then be used in references to objects in the server’s address space. What
is the main drawback of this scheme?

A: The main drawback is that it becomes much harder to dynamically allo-
cate objects to servers. In addition, many endpoints need to be fixed, instead
of just one (i.e., the one for the daemon). For machines possibly having a
large number of servers, static assignment of endpoints is not a good idea.

Q: Give an example implementation of an object reference that allows a
client to bind to a transient remote object.

10

11

12.

PROBLEM SOLUTIONS FOR CHAPTER 2 7

A: Using Java, we can express such an implementation as the following class:

public class Object_reference {

InetAddress server_address; / network address of object's server

int server_endpaint; /I endpoint to which server is listening

int object_identifier; // identifier for this object

URL client_code; // {remote) file containing client-side stub

byte[] init_data; // possible additional initialization data

The object reference should at least contain the transport-level address of

the server where the object resides. We also need an object identifier as the
server may contain several objects. In our implementation, we use a URL to
refer to a (remote) file containing all the necessary client-side code. A generic
array of bytes is used to contain further initialization data for that code. An
alternative implementation would have been to directly put the client-code
into the reference instead of a URL. This approach is followed, for example,
in Java RMI where proxies are passed as reference.

Q: Java and other languages support exceptions, which are raised when an
error occurs. How would you implement exceptions in RPCs and RMIs?

A: Because exceptions are initially raised at the server side, the server stub
can do nothing else but catch the exception and marshal it as a special error
response back to the client. The client stub, on the other hand, will have to
unmarshal the message and raise the same exception if it wants to keep access
to the server transparent. Consequently, exceptions now also need to be
described in an interface definition language.

Q: Would it be useful to also make a distinction between static and dynamic
RPCs?

A: Yes, for the same reason it is useful with remote object invocations: it
simply introduces more flexibility. The drawback, however, is that much of
the distribution transparency is lost for which RPCs were introduced in the
first place.

Q: Some implementations of distributed-object middleware systems are
entirely based on dynamic method invocations. Even static invocations are
compiled to dynamic ones. What is the benefit of this approach?

A: Realizing that an implementation of dynamic invocations can handle all
invocations, static ones become just a special case. The advantage is that only
a single mechanism needs to be implemented. A possible disadvantage is that
performance is not always as optimal as it could be had we analyzed the static
invocation.

8
13.

14

15

16

17.

PROBLEM SOLUTIONS FOR CHAPTER 2

Q: Describe how connectionless communication between a client and a
server proceeds when using sockets.

A: Both the client and the server create a socket, but only the server binds the
socket to a local endpoint. The server can then subsequently do a blocking
read call in which it waits for incoming data from any client. Likewise, after
creating the socket, the client simply does a blocking call to write data to the
server. There is no need to close a connection.

Q: Explain the difference between the primitives mpi_bsend and mpi_isend
in MPL

A: The primitive mpi_bsend uses buffered communication by which the
caller passes an entire buffer containing the messages to be sent, to the local
MPI runtime system. When the call completes, the messages have either been
transferred, or copied to a local buffer. In contrast, with mpi_isend, the caller
passes only a pointer to the message o the local MPI runtime system after

which it immediately continues. The caller is responsible for not overwriting
the message that is pointed to until it has been copied or transferred.

Q: Suppose you could make use of only transient asynchronous communica-
tion primitives, including only an asynchronous receive primitive. How would
you implement primitives for transient synchronous communication?

A: Consider a synchronous send primitive. A simple implementation is to
send a message to the server using asynchronous communication, and subse-
quently let the caller continuously poll for an incoming acknowledgement or
response from the server. 1f we assume that the local operating system stores
incoming messages into a local buffer, then an alternative implementation is
to block the caller until it receives a signal from the operating system that a
message has arrived, after which the caller does an asynchronous receive.

Q: Now suppose you could make use of only transient synchronous commun-
ication primitives. How would you implement primitives for transient asyn-
chronous communication?

A: This situation is actually simpler. An asynchronous send is implemented
by having a caller append its message 10 a buffer that is shared with a process
that handles the actual message transfer. Each time a client appends a mes-
sage to the buffer, it wakes up the send process, which subsequently removes
the message from the buffer and sends it its destination using a blocking call
to the original send primitive. The receiver is implemented similarly by offer-
ing a buffer that can be checked for incoming messages by an application.

Q: Does it make sense to implement persistent asynchronous communication
by means of RPCs?

A: Yes, but only on a hop-to-hop basis in which a process managing a queue
passes a message 0 a next queue manager by means of an RPC. Effectively,

18

19

20

21

PROBLEM SOLUTIONS FOR CHAPTER 2 9

the service offered by a queue manager to another is the storage of a message.
The calling queue manager is offered a proxy implementation of the interface
to the remote queue, possibly receiving a status indicating the success or
failure of each operation. In this way, even queue managers sce only queues
and no further communication.

Q: In the text we stated that in order to automatically start a process to fetch
messages from an input queue, a dasmon is often used that monitors the input
queue. Give an alternative implementation that does not make use of a dae-
mon.

A: A simple scheme is to let a process on the receiver side check for any
incoming messages each time that process puts a message in its own queue.

Q: Routing tables in IBM MQSeries, and in many other message-queuing
systems, are configured manually. Describe a simple way to do this automati-
cally.

A: The simplest implementation is to have a centralized component in which
the topology of the queuing network is maintained. That component simply
calculates all best routes between pairs of queue managers using a known
routing algorithm, and subsequently generaes routing tables for each queue
manager. These tables can be downloaded by each manager separately. This
approach works in quening networks where there are only relatively few, but
possibly widely dispersed, queue managers.

A more sophisticated approach is to decentralize the routing algorithm, by
having each queue manager discover the network topology, and calculate its
own best routes to other managers. Such solutions are widely applied in com-
puter networks. There is no principle objection for applying them to
message-quening networks.

Q: How would you incorporate persistent asynchronous communication into
a model of communication based on RMIs to remote objects?

A: An RMI should be asynchronous, that is, no immediate results are
expected at invocation time. Moreover, an RMI should be stored at a special
server that will forward it to the object as soon as the latter is up and running
in an object server.

Q: With persistent communication, a receiver generally has its own local
buffer where messages can be stored when the receiver is not executing. To
create such a buffer, we may need to specify its size. Give an argument why
this is preferable, as well as one against specification of the size.

A: Having the user specify the size makes its implementation easier. The sys-
tem creates a buffer of the specified size and is done. Buffer management
becomes easy. However, if the buffer fills up, messages may be lost. The
alternative is to have the communication system manage buffer size, starting

10

22

23.

24.

25,

26.

PROBLEM SOLUTIONS FOR CHAPTER 2

with some default size, but then growing (or shrinking) buffers as need be.
This method reduces the chance of having to discard messages for lack of
room, but requires much more work of the system.

Q: Explain why transient synchronous communication has inherent scalabil-
ity problems, and how these could be solved.

A: The problem is the limited geographical scalability. Because synchronous
communication requires that the caller is blocked until its message is
received, it may take a long time before a caller can continue when the
receiver is far away. The only way to solve this problem is to design the cal-
ling application so that it has other useful work to do while communication
takes place, effectively establishing a form of asynchronous communication.

Q: Give an example where multicasting is also useful for discrete data
streams.

A: Passing a large file to many users as is the case, for example, when updat-
ing mirror sites for Web services or software distributions.

Q: How could you guarantee a maximum end-to-end delay when a collection
of computers is organized in a (logical or physical) ring?

A: We let a token circulate the ring. Each computer is permitted to send data
across the ring (in the same direction as the token) only when holding the
token. Moreover, no computer is allowed to hold the token for more than T
seconds. Effectively, if we assume that communication between two adjacent
computers is bounded, then the token will have a maximum circulation time,
which corresponds to a maximum end-to-end delay for each packet sent.

Q: How could you guarantee a minimum end-to-end delay when a collection
of computers is organized in a (logical or physical) ring?

A: Strangely enough, this is much harder than guaranteeing a maximum
delay. The problem is that the receiving computer should, in principle, not
receive data before some elapsed time. The only solution is to buffer packets
as long as necessary. Buffering can take place either at the sender, the
receiver, or somewhere in between, for example, at intermediate stations. The
best place to temporarily buffer data is at the receiver, because at that point
there are no more unforeseen obstacles that may delay data delivery. The
receiver need merely remove data from its buffer and pass it to the applica-
tion using a simple timing mechanism. The drawback is that enough buffering
capacity needs to be provided.

Q: Imagine we have a token bucket specification where the maximum data
unit size is 1000 bytes, the token bucket rate is 10 million bytes/sec, the token
bucket size is 1 million bytes, and the maximum transmission rate is 50 mil-
lion bytes/sec. How long can a burst of maximum speed last?

PROBLEM SOLUTIONS FOR CHAPTER 2 11

A: Call the length of the maximum burst interval Az. In an extreme case, the
bucket is full at the start of the interval (1 million bytes) and another 10At
comes in during that interval. The output during the transmission burst con-
sists of 50A¢ million bytes, which should be equal to (1+10Ar). Consequently,
Atis equal to 25 msec.

12

1.

el

o

SOLUTIONS TO CHAPTER 3 PROBLEMS

Q: In this problem you are to compare reading a file using a single-threaded
file server and a multithreaded server. It takes 15 msec to get a request for
work, dispatch it, and do the rest of the necessary processing, assuming that
the data needed are in a cache in main memory. If a disk operation is needed,
as is the case one-third of the time, an additional 75 msec is required, during
which time the thread sleeps. How many requests/sec can the server handle if
it is single threaded? If it is multithreaded?

A: In the single-threaded case, the cache hits take 15 msec and cache misses
take 90 msec. The weighted average is 2/3 x 15+ 1/3 X 90. Thus the mean
request takes 40 msec and the server can do 25 per second. For a mul-
tithreaded server, all the waiting for the disk is overlapped, so every request
takes 15 msec, and the server can handle 66 2/3 requests per second.

Q: Would it make sense to limit the number of threads in a server process?

A: Yes, for two reasons. First, threads require memory for setting up their
own private stack. Consequently, having many threads may consume (00
much memory for the server to work properly. Another, more serious reason,
is that, to an operating system, independent threads tend to operate in a
chaotic manner. In a virtual memory system it may be difficult to build a rela-
tively stable working set, resulting in many page faults and thus I/O. Having
many threads may thus lead to a performance degradation resulting from page
thrashing.

Q: In the text, we described a multithreaded file server, showing why it is
better than a single-threaded server and a finite-state machine server. Are
there any circumstances in which a single-threaded server might be better?
Give an example.

A: Yes. If the server is entirely CPU bound, there is no need to have multiple
threads. It may just add unnecessary complexity. As an example, consider a
telephone directory assistance number (like 555-1212) for an area with 1 mil-
lion people. If each (name, telephone number) record is, say, 64 characters,
the entire database takes 64 megabytes, and can easily be kept in the server’s
memory to provide fast lookup.

Q: Statically associating only a single thread with a lightweight process is not
such a good idea. Why not?

A: Such an association effectively reduces to having only kernel-level
threads, implying that much of the performance gain of having threads in the
first place, is lost.

Q: Having only a single lightweight process per process is also not such a
good idea. Why not?

b

10.

PROBLEM SOLUTIONS FOR CHAPTER 3 13

A: In this scheme, we effectively have only user-level threads, meaning that
any blocking system call will block the entire process.

Q: Describe a simple scheme in which there are as many lightweight
processes as there are runnable threads.

A: Start with only a single LWP and let it select a runnable thread. When a
runnable thread has been found, the LWP creates another LWP to look for a
next thread to execute. If no runnable thread is found, the LWP destroys
itself.

Q: Proxies can support replication transparency by invoking each replica, as
explained in the text. Can (the server side of) an object be subject to a repli-
cated invocation?

A: Yes: consider a replicated object A invoking another (nonreplicated)
object B. If A consists of k replicas, an invocation of B will be done by each
replica. However, B should normally be invoked only once. Special measures
are needed to handle such replicated invocations.

Q: Constructing a concurrent server by spawning a process has some advan-
tages and disadvantages compared to multithreaded servers. Mention a few.

A: An important advantage is that separate processes are protected against
each other, which may prove to be necessary as in the case of a superserver
handling completely independent services. On the other hand, process spawn-
ing is a relatively costly operation that can be saved when using mul-
tithreaded servers. Also, if processes do need to communicate, then using
threads is much cheaper as in many cases we can avoid having the kernel
implement the communication.

Q: Sketch the design of a multithreaded server that supports multiple proto-
cols using sockets as its transport-level interface to the underlying operating
system.

A: A relatively simple design is to have a single thread T waiting for incom-
ing transport messages (TPDUs). If we assume the header of each TPDU con-
tains a number identifying the higher-level protocol, the tread can take the
payload and pass it to the module for that protocol. Each such module has a
separate thread waiting for this payload, which it treats as an incoming
request. After handling the request, a response message is passed to 7, which,
in turn, wraps it in a transport-level message and sends it to tthe proper desti-
nation.

Q: How can we prevent an application from circumventing a window
manager, and thus being able to completely mess up a screen?

A: Use a microkernel approach by which the windowing system including the
window manager are run in such a way that all window operations are

14

11.

12.

13.

PROBLEM SOLUTIONS FOR CHAPTER 3

required to go through the kernel. In effect, this is the essence of transferring
the client-server model to a single computer as we also explained in Chap. 1.

Q: Explain what an object adapter is.

A: An object adapter is a generic program capable of accepting incoming
invocation requests and passing these on to the server-side stub of an object.
An adapter is primarily responsible for implementing an invocation policy,
which determines if, how, and how many multiple threads are used to invoke
an object.

Q: Mention some design issues for an object adapter that is to support per-
sistent objects.

A: The most important issue is perhaps generating an object reference that
can be used independently of the current server and adapter. Such a reference
should be able to be passed on to a new server and to perhaps indicate a
specific activation policy for the referred object. Other issues include exactly
when and how a persistent object is written to disk, and to what extent the
object’s state in main memory may differ from the state kept on disk.

Q: Change the procedure thread_per_object in the example of the object
adapters, such that all objects under control of the adapter are handled by a
single thread.

A: The code stays almost the same, except that we need to create only a sin-
gle thread that runs a modified version of thread_per_object. This thread is
referred to as adapter_thread (its creation is not shown). When the demulti-
plexer calls the adapter, it puts a message in the buffer of adapter_thread,
after which the latter picks it up as before. The adapter thread invokes the
appropriate stub, and handles the response message.

#include <header.h>

#include <thread.h>

#define MAX_OBJECTS 100
#define NULL [o]
#define ANY -1

METHOD _CALL invoke[MAX_OBJECTS], /* array of pointers to stubs ¥/
THREAD *root; /* demuitiplexer thread */
THREAD *adapter_thread /* thread that runs single _thread*/

void single _thread(long object_id) {

message *req, *res; /* request/response message*/
unsigned size; /* size of messages */
char **results; /* array with all results*/

while(TRUE) {

14.

15.

16.

PROBLEM SOLUTIONS FOR CHAPTER 3 15
get_msg(&size, (char*) &req); /* block for invocation request */
/* Pass request to the appropriate stub. The stub is assumed to i
/* allocate memory for storing the results. */

(invoke[reg->object_id]*)(req->size, req->data, &size, results);

res = malloc(sizeof(message)+size); /* create response message */

res->object_id = object_id; /* identify object i
res->method_id = req.method_id; /* identify method */
res->size = size; /* set size of invocation results*/
memcpy(res->data, results, size); /* copy results into response */
put_msg(root, sizeof(res), res); /* append response to buffer */
free(req); /* free memory of request */
free(*results); /* free memory of resuits*/

void invoke _adapter(long oid, message *request) {
put_msg(adapter_thread, sizeof(request), request);

Q: Is a server that maintains a TCP/IP connection to a client stateful or state-
less?

A: Assuming the server maintains no other information on that client, one
could justifiably argue that the server is stateless. The issue is that not the
server, but the transport layer at the server maintains state on the client. What
the local operating systems keep track of is, in principle, of no concern to the
server.

Q: Imagine a Web server that maintains a table in which client IP addresses
are mapped to the most recently accessed Web pages. When a client connects
to the server, the server looks up the client in its table, and if found, returns
the registered page. Is this server stateful or stateless?

A: It can be strongly argued that this is a stateless server. The important issue
with stateless designs is not if any information is maintained by the server on
its clients, but rather how accurate that information has to be. In this exam-
ple, if the table is lost for what ever reason, the client and server can still
properly interact as if nothing happened. In a stateful design, such an interac-
tion would be possible only after the server had recovered from a possible
fault.

Q: To what extent does Java RMI rely on code migration?

A: Considering that object references are actually portable proxies, each time
an object reference is passed, we are actually migrating code across the

16

17

18

19

20

21

PROBLEM SOLUTIONS FOR CHAPTER 3

network. Fortunately, proxies have no execution state, so that support for sim-
ple weak mobility is all that is needed.

Q: Strong mobility in UNIX systems could be supported by allowing a pro-
cess to fork a child on a remote machine. Explain how this would work.

A: Forking in UNIX means that a complete image of the parent is copied to
the child, meaning that the child continues just after the call to fork. A similar
approach could be used for remote cloning, provided the target platform is
exactly the same as where the parent is executing. The first step is to have the
target operating system reserve resources and create the appropriate process
and memory map for the new child process. After this is done, the parent’s
image (in memory) can be copied, and the child can be activated. (It should
be clear that we are ignoring several important details here.)

Q: In Fig. 3-13 it is suggested that strong mobility cannot be combined with
executing migrated code in a target process. Give a counterexample.

A: If strong mobility takes place through thread migration, it should be possi-
ble to have a migrated thread be executed in the context of the target process.

Q: Consider a process P that requires access to file F which is locally avail-
able on the machine where P is currently running. When P moves to another
machine, it still requires access to F. If the file-to-machine binding is fixed,
how could the systemwide reference to F be implemented?

A: A simple solution is to create a separate process Q that handles remote
requests for F. Process P is offered the same interface to F as before, for
example in the form of a proxy. Effectively, process O operates as a file
server.

Q: Each agent in D’ Agents is implemented by a separate process. Agents can
communicate primarily through shared files and by means of message pass-
ing. Files cannot be transferred across machine boundaries. In terms of the
mobility framework given in Sec. 3.4, which parts of an agent’s state, as
given in Fig. 3-19, comprise the resource segment?

A: The resource segment contains all references to Iocal and global resources.
As such, it consists of those variables that refer to other agents, local files,
and so on. In D’Agents, these variables are primarily contained in the part
consisting of global program variables. What makes matters simple, is that
virtually all resources in D’Agents are nontransferrable. Only agents can
move betweeen machines. Because agents are already named by global refer-
ences, namely an (address, local-id) pair, transforming references to
resources in the presence of migration is relatively simple in D’ Agents.

Q: Compare the architecture of D’Agents with that of an agent platform in
the FIPA model.

A: The main distinction between the two is that D’Agents does not really
have a separate directory service. Instead, it offers only a low-level naming

22,

23.

PROBLEM SOLUTIONS FOR CHAPTER 3 17

service by which agents can be globally referenced. The management com-
ponent in the FIPA architecture corresponds to the server in D’Agents,
whereas the ACC is implemented by the communication layer. The FIPA
model provides no further details on the architecture of an agent, in contrast
to D’Agents.

Q: Where do agent communication languages (ACLs) fit into the OSI model?
A: Such languages are part of the application layer.

Q: Where does an agent communication language fit into the OSI model,
when it is implemented on top of a system for handling e-mail, such as in
D’Agents? What is the benefit of such an approach?

A: Tt would still be part of the application layer. An important reason for
implementing ACLs on top of e-mail, is simplicity. A complete, worldwide
communicaton infrastructure is available for handling asynchronous
message-passing between agents. Essentially, such an approach comes close
to message-queuing systems discussed in Chap. 2.

Q: Why is it often necessary to specify the ontology in an ACL message?

A: In this context, an ontology can best be interpreted as a reference to a stan-
dard interpretation of the actual data contained in an ACL message. Usually,
data in message-passing systems is assumed to be correctly interpreted by the
sender and receiver of a message. Agents are often considered to be highly
independent from each other. Therefore, it can not always be assumed that the
receiving side will interpret the transferred data correctly. Of course, it is
necessary that there is common agreement on the interpretation of the ontol-
ogy field.

18

o

SOLUTIONS TO CHAPTER 4 PROBLEMS

Q: Give an example of where an address of an entity E needs to be further
resolved into another address to actually access E.

A: IP addresses in the Internet are used to address hosts. However, to access a
host, its IP address needs to be resolved to, for example, an Ethernet address.

Q: Would you consider a URL such as htip:/fwww.acme.org/index. html to be
location independent? What about http:/fwww.acme.nl/index.htmi?

A: Both names can be location independent, although the first one gives
fewer hints on the location of the named entity. Location independent means
that the name of the entity is independent of its address. By just considering a
name, nothing can be said about the address of the associated entity.

Q: Give some examples of true identifiers.

A: Examples are ISBN numbers for books, identification numbers for
software and hardware products, employee numbers within a single organiza-
tion, and Ethernet addresses (although some addresses are used to identify a
machine instead of just the Ethernet board).

Q: How is a mounting point looked up in most UNIX systems?

A: By means of a mount table that contains an entry pointing to the mount
point. This means that when a mounting point is to be looked up, we need to
go through the mount table to see which entry matches a given mount point.

Q: Jade is a distributed file system that uses per-user name spaces (see In
other words, each user has his own, private name space. Can names from
such name spaces be used to share resources between two different users?

A: Yes, provided names in the per-user name spaces can be resolved to
names in a shared, global name space. For example, two identical names in
different name spaces are, in principle, completely independent and may refer
to different entities. To share entities, it is necessary to refer to them by
names from a shared name space. For example, Jade relies on DNS names
and IP addresses that can be used to refer to shared entities such as FTP sites.

Q: Consider DNS. To refer to a node Nina subdomain implemented as a dif-
ferent zone than the current domain, a name server for that zone needs to be
specified. Is it always necessary to include a resource record for that server’s
address, or is it sometimes sufficient to provide only its domain name?

A: When the name server is represented by a node NS in a domain other than
the one in which N is contained, it is enough to give only its domain name. In
that case, the name can be looked up by a separate DNS query. This is not
possible when NS lies in the same subdomain as N, for in that case, you
would need to contact the name server to find out its address.

7.

8.

10

11.

PROBLEM SOLUTIONS FOR CHAPTER 4 19

Q: Is an identifier allowed to contain information on the entity it refers to?

A: Yes, but that information is not allowed to change, because that would
imply changing the identifier. The old identifier should remain valid, so that
changing it would imply that an entity has two identifiers, violating the
second property of identifiers.

Q: Outline an efficient implementation of globally unique identifiers.

A: Such identifiers can be generated locally in the following way. Take the
network address of the machine where the identifier is generated, append the
local time to that address, along with a generated pseudo-random number.
Although, in theory, it is possible that another machine in the world can gen-
erate the same number, chances that this happens are negligible.

Q: Give an example of how the closure mechanism for a URL could work.

A: Assuming a process knows it is dealing with a URL, it first extracts the
scheme identifier from the URL, such as the string fip:. It can subsequently
look up this siring in a table to find an interface to a local implementation of
the FTP protocol. The next part of the closure mechanism consists of extract-
ing the host name from the URL, such as www.cs.vu.nl, and passing that to
the local DNS name server. Knowing where and how to contact the DNS
server is an important part of the closure mechanism. It is often hard-coded
into the URL name resolver that the process is executing. Finally, the last part
of the URL, which refers to a file that is to be looked up, is passed to the
identified host. The latter uses its own local closure mechanism to start the
name resolution of the file name.

Q: Explain the difference between a hard link and a soft link in UNIX sys-
tems.

A: A hard link is 2 named entry in a directory file pointing to the same file
descriptor as another named entry (in possibly a different directory). A sym-
bolic link is a file containing the (character string) name of another file.

Q: High-level name servers in DNS, that is, name servers implementing
nodes in the DNS name space that are close to the root, generally do not sup-
port recursive name resolution. Can we expect much performance improve-
ment if they did?

A: Probably not: because the high-level name servers constitute the global
layer of the DNS name space, it can be expected that changes to that part of
the name space do not occur often. Consequently, caching will be highly
effective, and much long-haul communication will be avoided anyway. Note
that recursive name resolution for low-level name servers is important,
because in that case, name resolution can be kept local at the lower-level
domain in which the resolution is taking place.

20

12.

13

14

15

16.

PROBLEM SOLUTIONS FOR CHAPTER 4

Q: Explain how DNS can be used to implement a home-based approach to
locating mobile hosts.

A: The DNS name of a mobile host would be used as (rather poor) identifier
for that host. Each time the name is resolved, it should retum the current IP
address of the host. This implies that the DNS server responsible for provid-
ing that IP address will act as the host’s name server. Each time the host
moves, it contacts this home server and provides it with its current address.
Note that a mechanism should be available to avoid caching of the address. In
other words, other name servers should be told not to cache the address
found.

Q: A special form of locating an entity is called anycasting, by which a ser-
vice is identified by means of an IP address (see, for example, Sending a
request to an anycast address, returns a response from a server implementing
the service identified by that anycast address. Outline the implementation of
an anycast service based on the hierarchical location service described in
Sec. 4.2.4.

A: Each service has a unique identifier associated with it. Any server imple-
menting that service, inserts its network-level address into the location ser-
vice at the directory node of the leaf domain in which the server resides.
Lookup requests use the identifier of the service, and will automatically return
the nearest server implementing that service.

Q: Considering that a two-tiered home-based approach is a specialization of a
hierarchical location service, where is the root?

A: The root is formed jointly by all home locations, but is partitioned in such
a way that each mobile entity has its own root server.

Q: Suppose it is known that a specific mobile entity will almost never move
outside domain D, and if it does, it can be expected to return soon. How can
this information be used to speed up the lookup operation in a hierarchical
location service?

A: Simply encode the domain D in the identifier for the entity that is used for
the lookup operation. The operation can then be immediately forwarded to the
directory node dir(D), from where the search continues.

Q: In a hierarchical location service with a depth of k, how many location
records need to be updated at most when a mobile entity changes its location?

A: Changing location can be described as the combination of an insert and a
delete operation. An insert operation requires that at worst k+1 location
records are to be changed. Likewise, a delete operation also requires changing
k+1 records, where the record in the root is shared between the two opera-
tions. This leads to a total of 2k+1 records.

PROBLEM SOLUTIONS FOR CHAPTER 4 21

17. Q: Consider an entity moving from location A to B, while passing several

18

19

20

21

intermediate locations where it will reside for only a relatively short time.
When arriving at B, it settles down for a while. Changing an address in a
hierarchical location service may still take a relatively long time to complete,
and should therefore be avoided when visiting an intermediate location. How
can the entity be located at an intermediate location?

A: Combine the hierarchical location service with forwarding pointers. When
the entity starts to move, it leaves behind a forwarding pointer at A to its next
(intermediate) location. Each time it moves again, a forwarding pointer is left
behind. Upon arrival in B, the entity inserts its new address into the hierarchi-
cal location service. The chain of pointers is subsequently cleaned up, and the
address in A is deleted.

Q: When passing a remote reference from process P; to P, in distributed
reference counting, would it help to let Py increment the counter, instead of
A: No, because in that case, process P, may decide to immediately remove
its reference before P; has a chance to increment the counter at the object.
Consequently, when P, sends its decrement message, the counter may drop to
zero and the object may be incorrectly removed.

Q: Make clear that weighted reference counting is more efficient than simple
reference counting. Assume communication is reliable.

A: Creation or removal of reference can be done with only a single message,
as is also the case with simple reference counting. Passing a reference is
much cheaper, as it can be done with only one message containing the copied
reference with its partial weight set to half of the weight of the original refer-
ence. There is thus no need to contact the object, in contrast to simple refer-
ence counting.

Q: Is it possible in generation reference counting, that an object is collected
as garbage while there are still references, but which belong to a generation
the object does not know of?

A: No. Whenever a reference of generation & is removed (so that possibly the
associated entry in G [k] becomes zero), the object is always informed about
any outstanding references of generation k+1. If that generation was not yet
known to the object, it will be at the time a reference of generation k is
removed.

Q: Is it possible in generation reference counting, that an entry G [i] becomes
smaller than zero?

A: Yes. Suppose a reference of generation k is copied, leading to a reference
of generation k+1. If the latter is removed before the reference from which it

22

22

23

PROBLEM SOLUTIONS FOR CHAPTER 4

was copied, G [k+1] will be decremented by one. If no reference of genera-
tion k had yet been removed, G [k+1] will then drop below zero.

Q: In reference listing, if no response is received after sending a ping mes-
sage to process P, the process is removed from the object’s reference list. Is it
always correct to remove the process?

A: No. It may be possible that the process is temporarily unreachable due to a
network partition, for example, caused by a failing router or gateway. In that
case, the reference is lost and the skeleton may falsely decide that the object
can be removed if the list becomes empty.

Q: Describe a very simple way to decide that the stabilization step in the
tracing-based garbage collector of Lang et al. has been reached.

A: Assume that each process can decide whether its local garbage collector
has changed any of the markings on proxies or skeletons during the local pro-
pagation step. A very simple, nonscalable solution, is to report whether or not
any changes have been made to a central coordinator. As soon as that coordi-
nator has recorded that no more changes have occurred, it tells each process
to start reclaiming garbage.

1.

SOLUTIONS TO CHAPTER 5 PROBLEMS

Q: Name at least three sources of delay that can be introduced between
WWYV broadcasting the time and the processors in a distributed system setting
their internal clocks.

A: First we have signal propagation delay in the atmosphere. Second we
might have collision delay while the machines with the WWYV receivers fight
to get on the Ethernet. Third, there is packet propagation delay on the LAN.
Fourth, there is delay in each processor after the packet arrives, due to inter-
rupt processing and internal queueing delays.

Q: Consider the behavior of two machines in a distributed system. Both have
clocks that are supposed to tick 1000 times per millisecond. One of them
actually does, but the other ticks only 990 times per millisecond. If UTC
updates come in once a minute, what is the maximum clock skew that will
occur?

A: The second clock ticks 990,000 times per second, giving an error of 10
msec per second. In a minute this error has grown to 600 msec. Another way
of looking at it is that the second clock is one percent slow, so after a minute
it is off by 0.01 x 60 sec, or 600 msec.

Q: Add a new message to Fig. 5-7 that is concurrent with message A, that is,
it neither happens before A nor happens after A.

A: The solution cannot involve 0 or it would be ordered. Thus it must be a
message from 1 to 2 or from 2 to 1. If it departs or arrives from 1 after 16, it
will be ordered with respect to A, so it must depart or arrive before 16. The
possibilities are a message leaving process 2 at 0 and arriving at process 1 at
8, or a message leaving process 1 at 0 and arriving at process 2 at 10. Both of
these are concurrent with A.

Q: To achieve totally-ordered multicasting with Lamport timestamps, is it
strictly necessary that each message is acknowledged?

A: No, it is sufficient to multicast any other type of message, as long as that
message has a timestamp larger than the received message. The condition for
delivering a message m to the application, is that another message has been
received from each other process with a large timestamp. This guarantees that
there are no more messages underway with a lower timestamp.

Q: Consider a communication layer in which messages are delivered only in
the order that they were sent. Give an example in which even this ordering is
unnecessarily restrictive.

A: Imagine the transfer of a large image which, to that end, has been divided
into consecutive blocks. Each block is identified by its position in the original
image, and possibly also its width and height. In that case, FIFO ordering is

24

10

PROBLEM SOLUTIONS FOR CHAPTER 5

not necessary, as the receiver can simply paste each incoming block into the
correct position.

Q: Suppose that two processes detect the demise of the coordinator simul-
taneously and both decide to hold an election using the bully algorithm. What
happens?

A: Each of the higher-numbered processes will get two ELECTION mes-
sages, but will ignore the second one. The election will proceed as usual.

Q: In Fig. 5-12 we have two ELECTION messages circulating simultane-
ously. While it does no harm to have two of them, it would be more elegant if
one could be killed off. Devise an algorithm for doing this without affecting
the operation of the basic election algorithm.

A: When a process receives an ELECTION message, it checks to see who
started it. If it itself started it (i.e., its number is at the head of the list), it turns
the message into a COORDINATOR message as described in the text. If it did
not start any ELECTION message, it adds its process number and forwards it
along the ring. However, if it did send its own ELECTION message earlier
and it has just discovered a competitor, it compares the originator’s process
number with its own. If the other process has a lower number, it discards the
message instead of passing it on. If the competitor is higher, the message is
forwarded in the usual way. In this way, if multiple ELECTION messages are
started, the one whose first entry is highest survives. The rest are killed off
along the route.

Q: Many distributed algorithms require the use of a coordinating process. To
what extent can such algorithms actually be considered distributed? Discuss.

A: In a centralized algorithm, there is often one, fixed process that acts as
coordinator. Distribution comes from the fact that the other processes run on
different machines. In distributed algorithms with a nonfixed coordinator, the
coordinator is chosen (in a distributed fashion) among the processes that form
part of the algorithm. The fact that there is a coordinator does not make the
algorithm less distributed.

Q: In the centralized approach to mutual exclusion (Fig. 5-13), upon receiv-
ing a message from a process releasing its exclusive access to the critical
region it was using, the coordinator normally grants permission to the first
process on the queue. Give another possible algorithm for the coordinator.

A: Requests could be associated with priority levels, depending on their
importance. The coordinator could then grant the highest priority request first.

Q: Consider Fig. 5-13 again. Suppose that the coordinator crashes. Does this
always bring the system down? If not, under what circumstances does this
happen? Is there any way to avoid the problem and make the system able to
tolerate coordinator crashes?

11

12

13

PROBLEM SOLUTIONS FOR CHAPTER 5 25

A: Suppose that the algorithm is that every request is answered immediately,
either with permission or with denial. If there are no processes in critical
regions and no processes queued, then a crash is not fatal. The next process to
request permission will fail to get any reply at all, and can initiate the election
of a new coordinator. The system can be made even more robust by having
the coordinator store every incoming request on disk before sending back a
reply. In this way, in the event of a crash, the new coordinator can reconstruct
the list of active critical regions and the queue by reading file from the disk.

Q: Ricart and Agrawala’s algorithm has the problem that if a process has
crashed and does not reply to a request from another process to enter a critical
region, the lack of response will be interpreted as denial of permission. We
suggested that all requests be answered immediately, to make it easy to detect
crashed processes. Are there any circumstances where even this method is
insufficient? Discuss.

A: Suppose a process denies permission and then crashes. The requesting
process thinks that it is alive, but permission will never come. One way out is
to have the requester not actually block, but rather go to sleep for a fixed
period of time, after which it polls all processes that have denied permission
to see if they are still running.

Q: How do the entries in Fig. 5-16 change if we assume that the algorithms
can be implemented on a LAN that supports hardware broadcasts?

A: Only the entries for the distributed case change. Because sending a point-
to-point message is as expensive as doing a broadcast, we need only send one
broadcast message to all processes requesting the entry to the critical section.
Likewise, only one exit broadcast message is needed. The delay becomes
1+(n — 1): one delay coming from the broadcast request, and an additional
n—1 as we still need to receive a message from each other process before
being allowed to enter the critical section.

Q: A distributed system may have multiple, independent critical regions.
Imagine that process 0 wants to enter critical region A and process 1 wants to
enter critical region B. Can Ricart and Agrawala’s algorithm lead to
deadlocks? Explain your answer.

At It depends on the ground rules. If processes enter critical regions strictly
sequentially, that is, a process in a critical region may not attempt to enter
another one, then there is no way that it can block while holding a resource
(ie., a critical section) that some other process wants. The system is then
deadlock free. On the other hand, if process 0 may enter critical region A and
then try to enter critical region B, a deadlock can occur if some other process
tries to acquire them in the reverse order. The Ricart and Agrawala algorithm
itself does not contribute to deadlock since each critical region is handled
independently of all the others.

PROBLEM SOLUTIONS FOR CHAPTER 5

14. Q: In Fig. 5-17 we saw a way to update an inventory list atomically using

magnetic tape. Since a tape can easily be simulated on disk (as a file), why do
you think this method is not used any more?

A: The primary reason is probably that people have gotten greedier and want
to do more than they used to. If the users were content to simply maintain the
inventory by making a run once a day, one could do it on disk. The problem is
that now everyone is demanding instantaneous online access to the data base,
which makes it impossible to store the inventory as a tape image.

Q: In Fig. 5-25(d) three schedules are shown, two legal and one illegal. For
the same transactions, give a complete list of all values that x might have at
the end, and state which are legal and which are illegal.

A: The legal values are 1, 2, and 3. The illegal values are 4, 5, and 6. The 4 is
achieved by first running the middle transaction, then incorrectly interleaving
the other two. The 5 is achieved in schedule 3. The 6 is achieved by first set-
ting x to O three times, then incrementing it three times.

Q: When a private workspace is used to implement transactions on files, it
may happen that a large number of file indices must be copied back to the
parent’s workspace. How can this be done without introducing race condi-
tions?

A: One way is by setting a lock at the top of the system to prevent any
activity at all until all the indices have been overwritten. It would probably be
wise to create an intentions list before starting to guard against crashes.

Q: Give the full algorithm for whether an attempt to lock a file should
succeed or fail. Consider both read and write locks, and the possibility that
the file was unlocked, read locked, or write locked.

A: The algorithm is as follows. If the file is unlocked, the attempt always
succeeds. If the file is read locked and the attempt is for another read lock, it
also succeeds. In all other cases, it fails (i.e., write locking a locked file fails,
as does read locking a file already locked for writing).

Q: Systems that use locking for concurrency control usually distinguish read
locks from write locks. What should happen if a process has already acquired
a read lock and now wants to change it into a write lock? What about chang-
ing a write lock into a read lock?

A: A read lock can only be converted to a write lock if there are no other
readers. Doing this conversion is effectively releasing the lock, then immedi-
ately trying to reacquiring it as a write lock. This operation fails if there are
other readers. If there are other processes waiting to acquire a write lock, it is
a matter of policy whether it should succeed; there is no technical objection.
Downgrading a lock from write to read is always legal and should always

PROBLEM SOLUTIONS FOR CHAPTER 5 27

work. (Doing so, however, implicitly gives priority to waiting readers over
waiting writers, but this is a legal choice.)

Q: With timestamp ordering in distributed transactions, suppose a write
operation write(T),x) can be passed to the data manager, because the only,
possibly conflicting operation write(T,,x) had a lower timestamp. Why would
it make sense to let the scheduler postpone passing write(T1,x) until transac-
tion T finishes?

A: By waiting until transaction T, finishes, the scheduler may avoid a cas-
caded abort in the case T, aborts.

Q: Is optimistic concurrency control more or less restrictive than using time-
stamps? Why?

A: It is more restrictive because by using the optimistic scheme, if a transac-
tion tries to commit and discovers that another transaction has modified a file
it has used, it always aborts. With timestamps, the transaction can sometimes
commit, namely, if the other transaction has a lower timestamp.

Q: Does using timestamping for concurrency control ensure serializability?
Discuss.

A: Yes. Stronger yet, it either completely serializes the transactions in their
timestamp order, or it aborts some of them.

Q: We have repeatedly said that when a transaction is aborted, the world is
restored to its previous state, as though the transaction had never happened.
We lied. Give an example where resetting the world is impossible.

A: Any situation in which physical I/O has occurred cannot be reset. For
example, if the process has printed some output, the ink cannot be removed
from the paper. Also, in a system that controls any kind of industrial process,
itis usually impossible to undo work that has been done.

28

1.

L

SOLUTIONS TO CHAPTER 6 PROBLEMS

Q: Access to shared Java objects can be serialized by declaring its methods as
being synchronized. Is this enough to guarantee serialization when such an
object is replicated?

A: No. The problem is that access to each replica is serialized. However, dif-
ferent operations at different replicas may be executed at the same time, leav-
ing the replicated instance variables in an inconsistent state.

Q: Consider a monitor as discussed in Chap. 1. If threads are allowed to
block in a replicated monitor, what do we need to guarantee when signaling a
condition variable?

A: That the same thread is awakened in each replica, so that exactly the same
flow of control takes place in all replicas. In practice, this means that the run-
time system should be in full control of thread scheduling at each replica.

Q: Explain in your own words what the main reason is for actually consider-
ing weak consistency models.

A: Weak consistency models come from the need to replicate for perfor-
mance. However, efficient replication can be done only if we can avoid glo-
bal synchronizations, which, in turn, can be achieved by loosening con-
stistency constraints.

Q: Explain how replication in DNS takes place, and why it actually works so
well.

A: The basic idea is that name servers cache previously looked up results.
These results can be kept in a cache for a long time, because DNS makes the
assumption that name-to-address mappings do not change often.

Q: During the discussion of consistency models, we often referred to the con-
tract between the software and data store. Why is such a contract needed?

A: If a program expects a sequentially consistent data store and cannot live
with anything less, the store must provide sequential consistency. However,
to improve performance, some systems provide a weaker model. It is then
essential that the software agrees to abide by the rules imposed by this model.
Generally, it means that programs obeying the rules will perceive what looks
like a sequentially consistent data store.

Q: Linearizability assumes the existence of a global clock. However, with
strict consistency we showed that such an assumption is not realistic for most
distributed systems. Can linearizability be implemented for physically distri-
buted data stores?

A: Yes. Linearizability assumes loosely synchronized clocks, that is, it
assumes that several events may happen within the same time slot. Those
events need to be ranked adhering to sequential consistency.

~1

o

N2

10.

11

12

13

PROBLEM SOLUTIONS FOR CHAPTER 6 29

Q: A multiprocessor has a single bus. Is it possible to implement strictly con-
sistent memory?

A: Yes. The bus serializes requests so they appear at the memory in absolute
time order.

Q: Why is W (x)a R,(x)NIL R;(x)a not legal for Fig. 6-7(b)?
A: It violates data coherence.

Q: In Fig. 6-0, is 000000 a legal output for a distributed shared memory that
is only FIFO consistent? Explain your answer.

A: Yes. Suppose (a) runs first. It prints 00. Now (b) runs. If the store into (a)
has not arrived yet, it also prints 00. Now (c) runs. If neither store has arrived
yet, it too prints 00.

Q: In Fig. 6-8, is 001110 a legal output for a sequentially consistent memory?
Explain your answer.

A: Yes. If the processes run in the order (a), (c), (b), this result is obtained.

Q: At the end of Sec. 6.2.2, we discussed a formal model that said every set
of operations on a sequentially consistent data store can be modeled by a
string, H, from which all the individual process sequences can be derived.
For processes Py and P, in Fig. 6-9, give all the possible values of H. Ignore
processes P3 and P4 and do not include their operations in H.

A: It is clear that P, cannot read 1 before it is written, so all values of H will
have the write of 1 before the read of 1. Program order is respected, so the
write of 2 must come after the read of 1. The only possibilities that remain are
these:

H=W(x)a R(x)a Wx)b Wx)c

H=W(x)a R(x)a W(x)c Wx)b

Q: In Fig. 6-13, a sequentially consistent memory allows six possible state-
ment interleavings. List them all.

A: The six statement interleavings are as follows:

(1) a=1; if (b==0); b=1, if (a==0);

(2) a=1; b=1; if (a==0); if (b==0);

(3) a=1; b=1; if (b==0); if (a==0);

(4) b=1; if (a==0); a=1; if (b==0)

(5) b=1; a=1; if (b==0); if (a==0);

(6) b=1; a=1; if (a==0); if (b==0);

Q: It is often argued that weak consistency models impose an extra burden
for programmers. To what extent is this statement actually true?

A: It really depends. Many programmers are used to protect their shared data
through synchronization mechanisms such as locks or transactions. The main

30

14.

15

16

17

18

PROBLEM SOLUTIONS FOR CHAPTER 6

idea is that they require a coarser grain of concurrency than one offered at the
level of only read and write operations. However, programmers do expect that
operations on synchronization variables adhere to sequential consistency.

Q: In most implementations of (eager) release consistency in distributed
shared memory systems, shared variables are synchronized on a release, but
not on an acquire. Why is acquire needed at all then?

A: Acquire is needed to delay a process trying to access shared variables
while another process is doing so.

Q: Does Orca offer sequential consistency or entry consistency? Explain your
answer.

A: Formally, Orca provides only entry consistency, as concurrent operations
on the same object are properly serialized. However, when using totally-
ordered broadcasting as the means to implement ordering on operations, all
operations are globally ordered, independent of the object on which they are
performed. In that case, it offers sequential consistency.

Q: Does totally-ordered multicasting by means of a sequencer and for the
sake of consistency in active replication, violate the end-to-end argument in
system design?

A: Yes. The end-to-end argument states that problems should be solved at the
same level in which they occur. In this case, we are dealing with the problem
of totally-ordered multicasting for achieving consistency in active replication.
In primary-based protocols, consistency is achieved by first forwarding all
operations to the primary. Using a sequencer, we are actually doing the same
but at a lower level of abstraction. In this case, it may have been better to use
a primary-based protocol in which updates are propagated by sending opera-
tions.

Q: What kind of consistency would you use to implement an electronic stock
market? Explain your answer.

A: Causal consistency is probably enough. The issue is that reactions to
changes in stock values should be consistent. Changes in stocks that are
independent can be seen in different orders.

Q: Consider a personal mailbox for a mobile user, implemented as part of a
wide-area distributed database. What kind of client-centric consistency would
be most appropriate?

A: All of them, actually. What it boils down to is that the owner should
always see the same mailbox, no matter whether he is reading or updating it.
In fact, the simplest implementation for such a mailbox may well be that of a
primary-based local-write protocol, where the primary is always located on
the user’s mobile computer.

PROBLEM SOLUTIONS FOR CHAPTER 6 31

19. Q: Describe a simple implementation of read-your-writes consistency for

20,

21

22

23

24,

displaying Web pages that have just been updated.

A: The simplest implementation is to let the browser always check whether it
is displaying the most recent version of a page. This requires sending a
request to the Web server. This scheme is simple as it is already implemented
by many systems.

Q: Give an example where client-centric consistency can easily lead to
write-write conflicts.

A: In our description of client-centric consistency models, we assumed that
each data item had a single owner, which had exclusive write access. Drop-
ping this assumption is enough to generate write-write conflicts. For example,
if two independent users of the same data eventually bind to the same replica,
their respective updates may need to be propagated to that replica. At that
point, update conflicts will become apparent.

Q: When using a lease, is it necessary that the clocks of a client and the
server, respectively, are tightly synchronized?

A: No. If the client takes a pessimistic view concerning the level at which its
clock is synchronized with that of the server, it will attempt to obtain a new
lease far before the current one expires.

Q: Consider a nonblocking primary-backup protocol used to guarantee
sequential consistency in a distributed data store. Does such a data store
always provide read-your-writes consistency?

A: No. As soon as the updating process receives an acknowledgement that its
update is being processed, it may disconnect from the data store and recon-
nect to another replica. No guarantees are given that the update has already
reached that replica. In contrast, with a blocking protocol, the updating pro-
cess can disconnect only after its update has been fully propagated to the
other replicas as well.

Q: For active replication to work in general, it is necessary that all operations
be carried out in the same order at each replica. Is this ordering always neces-
sary?

A: No. Consider read operations that operate on nonmodified data or commu-
tative write operations. In principle, such situations allow ordering to be dif-
ferent at different replicas. However, it can be hard or impossible to detect
whether, for example, two write operations are commutative.

Q: To implement totally-ordered multicasting by means of a sequencer, one
approach is to first forward an operation to the sequencer, which then assigns
it a unique number and subsequently multicasts the operation. Mention two
alternative approaches, and compare the three solutions.

32

25.

26,

27

28.

PROBLEM SOLUTIONS FOR CHAPTER 6

A: Another approach is to multicast the operation, but defer delivery until the
sequencer has subsequently multicast a sequence number for it. The latter
happens after the operation has been received by the sequencer. A third
approach is to first get a sequence number from the sequencer, and then mul-
ticast the operation.

The first approach (send operation to sequencer), involves sending one point-
to-point message with the operation, and a multicast message. The second
approach requires two multicast messages: one containing the operation, and
one containing a sequence number. The third approach, finally, costs one
point-to-point message with the sequence number, followed by a multicast
message containing the operation.

Q: A file is replicated on 10 servers. List all the combinations of read quorum
and write quorum that are permitted by the voting algorithm.

A: The following possibilities of (read quorum, write quorum) are legal. (1,
10),(2,9), (3, 8), (4, 7), (5,6), (6, 5), (7, 4, (8, 3), (9, 2), and (10, 1).

Q: In the text, we described a sender-based scheme for preventing replicated
invocations. In a receiver-based scheme, a receiving replica recognizes copies
of incoming messages that belong to the same invocation. Describe how
replicated invocations can be prevented in a receiver-based scheme.

A: Assume object A invokes object B. As before, each invocation is assigned
the same, unique identifier by all replicas of A. Each replica subsequently
multicasts its invocation request to the replicas of B. When a replica of B
receives an invocation request, it checks whether it had already received that
request from one of A’s replicas. If not, the invocation is carried out at the
local replica, and a reply message is multicast to all replicas of A. If the invo-
cation had already been done, the incoming request is further ignored. Like-
wise, a replica of A passes only the first incoming reply for an outstanding
invocation request to its local copy of the object, while all subsequent replies
to that same invocation request are simply ignored.

Q: Consider causally-consistent lazy replication. When exactly can an opera-
tion be removed from a write queue?

A: When it is known that the operation has been performed everywhere. This
can be detected by keeping track of the last update (from, say L;) carried out
in each copy L;. If each L; has performed an operation W from L; with times-
tamp ts(W), L; can remove all operations W’ with a smaller timestamp (i.e.,
with each W’{k] < W[k]). Therefore, each L; sends an acknowledgement to
L; containing the timestamp of the most recently performed write operation.

Q: For this exercise, you are to implement a simple system that supports mul-
ticast RPC. We assume that there are multiple, replicated servers and that
each client communicates with a server through an RPC. However, when

PROBLEM SOLUTIONS FOR CHAPTER 6 33

dealing with replication, a client will need to send an RPC request to each
replica. Program the client such that to the application it appears as if a single
RPC is sent. Assume you are replicating for performance, but that servers are
susceptible to failures.

34

=

N

SOLUTIONS TO CHAPTER 7 PROBLEMS

Q: Dependable systems are often required to provide a high degree of secu-
rity. Why?

A: If, for example, the responses given by servers cannot be trusted to be
correct because some malicious party has tampered with them, it hardly
makes sense to talk about a dependable system. Likewise, servers should be
able to trust their clients.

Q: What makes the fail-stop model in the case of crash failures so difficult to
implement?

A: The fact that, in practice, servers simply stop producing output. Detecting
that they have actually stopped is difficult. As far as another process can see,
the server may just be slow, or communication may (temporarily) be failing.

Q: Consider a Web browser that returns an outdated cached page instead of a
more recent one that had been updated at the server. Is this a failure, and if so,
what kind of failure?

A: Whether or not it is a failure depends on the consistency that was prom-
ised to the user. If the browser promises to provide pages that are at most 7
time units old, it may exhibit performance failures. However, a browser can
never live up to such a promise in the Internet. A weaker form of consistency
is to provide one of the client-centric models discussed in Chap. 7. In that
case, simply returning a page from the cache without checking its consistency
may lead to a response failure.

Q: Can the model of triple modular redundancy described in the text handle
Byzantine failures?

A: Absolutely. The whole discussion assumed that failing elements put out
random results, which are the same as Byzantine failures.

Q: How many failed elements (devices plus voters) can Fig. 7-2 handle?
Give an example of the worst case that can be masked.

A: In each row of circles, at most one element can fail and be masked. Furth-
ermore, one voter in each group can also fail provided it is feeding a faulty
element in the next stage. For example, if all six elements at the top of their
respective columns all fail, two of the three final outputs will be correct, so
we can survive six failures.

Q: Does TMR generalize to five elements per group instead of three? If so,
what properties does it have?

A: Yes, any odd number can be used. With five elements and five voters, up
to two faults per group of devices can be masked.

PROBLEM SOLUTIONS FOR CHAPTER 7 35

7. Q: For each of the following applications, do you think at-least-once seman-

10

1

12

tics or at most once semantics is best? Discuss.

(a) Reading and writing files from a file server.
(b) Compiling a program.
(c) Remote banking.

A: For (a) and (b), at least once is best. There is no harm trying over and
over. For (c), it is best to give it only one try. If that fails, the user will have to
intervene to clean up the mess.

Q: With asynchronous RPCs, a client is blocked until its request has been
accepted by the server (see Fig. 2-12). To what extent do failures affect the
semantics of asynchronous RPCs?

A: The semantics are generally affected in the same way as ordinary RPCs. A
difference lies in the fact that the server will not be processing the request
while the client is blocked, which introduces problems when the client
crashes in the meantime. Instead, the server simply does its work, and
attempts to contact the client later on, if necessary.

Q: Give an example in which group communication requires no message ord-
ering at all.

A: Multicasting images in small fragments, where each fragment contains the
(x,y) coordinate as part of its data. Likewise, sending the pages of a book,
with each page being numbered.

Q: In reliable multicasting, is it always necessary that the communication
layer keeps a copy of a message for retransmission purposes?

A: No. In many cases, such as when transferring files, it is necessary only that
the data is still available at the application level. There is no need that the
communication layer maintains its own copy.

Q: To what extent is scalability of atomic multicasting important?

A: It really depends on how many processes are contained in a group. The
important thing to note is, that if processes are replicated for fault tolerance,
having only a few replicas may be enough. In that case, scalability is hardly
an issue. When groups of different processes are formed, scalability may
become an issue. When replicating for performance, atomic multicasting
itself may be overdone.

Q: In the text, we suggest that atomic multicasting can save the day when it
comes to performing updates on an agreed set of processes. To what extent
can we guarantee that each update is actually performed?

A: We cannot give such guarantees, similar to guaranteeing that a server has
actually performed an operation after having sent an acknowledgement to the

36

13.

14.

15.

16

17.

PROBLEM SOLUTIONS FOR CHAPTER 7

client. However, the degree of fault tolerance is improved by using atomic
multicasting schemes, and makes developing fault-tolerant systems easier.

Q: Virtual synchrony is analogous to weak consistency in distributed data
stores, with group view changes acting as synchronization points. In this con-
text, what would be the analogon of strong consistency?

A: The synchronization resulting from individual multicasts, be they totally,
causally, or FIFO ordered. Note that view changes take place as special mul-
ticast messages, which are required to be properly ordered as well.

Q: What are the permissable delivery orderings for the combination of FIFO
and total-ordered multicasting in Fig. 7-147

A: There are six orderings possible:

Order1 Order2 Order3 Order 4 Order5 Order 6

mi m1 mi m3 m3 m3
m2 m3 m3 mi mi m4
m3 m2 m4 m2 m4 mi
m4 m4 m2 m4 m2 m2

Q: Adapt the protocol for installing a next view G;,; in the case of virtual
synchrony so that it can tolerate process failures.

A: When a process P receives Gy, it first forwards a copy of any unstable
message it has, regardless to which previous view it belonged, to every pro-
cess in Gy, followed by a flush message for Gy It can then safely mark
the message as being stable. If a process Q receives a message m that was
sent in G; (with j < i+k), it discards it when @ was never in G;. If the most
recently instailed view at Q is G; with [> j, message m is also discarded (it
is a duplicate). If I = j and m had not yet been received, process Q delivers m
taking any additional message ordering constraints into account. Finally, if
I < j, message m is simply stored in the communication layer until G; has
been installed.

Q: In the two-phase commit protocol, why can blocking never be completely
eliminated, even when the participants elect a new coordinator?

A: After the election, the new coordinator may crash as well. In this case, the
remaining participants can also not reach a final decision, because this
requires the vote from the newly elected coordinator, just as before.

Q: In our explanation of three-phase commit, it appears that committing a
transaction is based on majority voting. Is this true?
A: Absolutely not. The point to note is that a recovering process that could

not take part in the final decision as taken by the other process, will recover to
a state that is consistent with the final choice made by the others.

18.

19.

20.

21.

PROBLEM SOLUTIONS FOR CHAPTER 7 37

Q: In a piecewise deterministic execution model, is it sufficient to log only
messages, or do we need to log other events as well?

A: More logging is generally needed: it concerns all nondeterministic events,
including local /O and, in particular, system calls.

Q: Explain how the write-ahead log in distributed transactions can be used to
recover from failures.

A: The log contains a record for each read and write operation that took place
within the transaction. When a failure occurs, the log can be replayed to the
Jast recorded operation. Replaying the log is effectively the opposite from rol-
ling back, which happens when the transaction needed to be aborted.

Q: Does a stateless server need to take checkpoints?

At It depends on what the server does. For example, a database server that
has been handed a complete transaction will maintain a log to be able to redo
its operations when recovering. However, there is no need to take checkpoints
for the sake of the state of the distributed system. Checkpointing is done only
for local recovery.

Q: Receiver-based message logging is generally considered better than
sender-based logging. Why?

A: The main reason is that recovery is entirely local. In sender-based logging,
a recovering process will have to contact its senders to retransmit their mes-
sages.

38

1.

1

Eal

SOLUTIONS TO CHAPTER 8 PROBLEMS

Q: Which mechanisms could a distributed system provide as security services
to application developers that believe only in the end-to-end argument in
system’s design, as discussed in Chap. 5?7

A: None. Applying the end-to-end argument to security services means that
developers will not trust anything that is not provided by their own applica-
tons. In effect, the distributed system as a whole is considered to be
untrusted.

Q: In the RISSC approach, can all security be concentrated on secure servers
or not?

A: No, we still need to make sure that the local operating systems and com-
munication between clients and servers are secure.

Q: Suppose you were asked to develop a distributed application that would
allow teachers to set up exams. Give at least three statements that would be
part of the security policy for such an application.

A: Obvious requirements would include that students should not be able to
access exams before a specific time. Also, any teacher accessing an exam
before the actual examination date should be authenticated. Also, there may
be a restricted group of people that should be given read access to any exam
in preparation, whereas only the responsible teacher should be given full
access.

Q: Would it be safe to join message 3 and message 4 in the authentication
protocol shown in Fig. 8-15, into Ky g(Rg,Ry)?

A: Yes, there is no reason why the challenge sent by Alice for Bob cannot be
sent in the same message.

Q: Why is it not necessary in Fig. 8-12 for the KDC to know for sure it was
talking to Alice when it receives a request for a secret key that Alice can
share with Bob?

A: Suppose that Chuck had sent the message “I’'m Alice and I want to talk to
Bob.” The KDC would just return K4 kpc(Ks p) which can be decrypted only
by Alice because she is the only other entity holding the secret key Ky gpc-

Q: What is wrong in implementing a nonce as a timestamp?

A: Although a timestamp is used only once, it is far from being random.
Implementations of security protocols exist that use timestamps as nonces,
and which have been succusfully attacked by exploiting the nonrandomness
of the nonces.

10

11.

12.

13.

PROBLEM SOLUTIONS FOR CHAPTER 8 39

Q: In message 2 of the Needham-Schroeder authentication protocol, the
ticket is encrypted with the secret key shared between Alice and the KDC. Is
this encryption necessary?

A: No. Because Bob is the only one who can decrypt the ticket, it might as
well have been sent as plaintext.

Q: Can we safely adapt the authentication protocol shown in Fig. 8-19 such
that message 3 consists only of Rg?

A: In principle, if Ry is never used again, then returning it unencrypted should
be enough. However, such randomness is seldom found. Therefore, by
encrypting Rp, it becomes much more difficult for Chuck to break in and
forge message 3.

Q: Devise a simple authentication protocol using signatures in a public-key
cryptosysterm.

A: If Alice wants to authenticate Bob, she sends Bob a challenge R. Bob will
be requested to return Kz (R), that is, place his signature under R. If Alice is
confident that she has Bob’s public key, decrypting the response back to R
should be enough for her to know she is indeed talking to Bob.

Q: Assume Alice wants to send a message m to Bob. Instead of encrypting m
with Bob’s public key K3, she generates a session key K p and then sends
Hka.mnsv.kmﬁ@.w:. Why is this scheme generally better? (Hint: consider
performance issues.)

A: The session key has a short, fixed length. In contrast, the message m may
be of arbitrary length. Consequently, the combination of using a session key
and applying public-key cryptography to a short message will generally pro-
vide much better performance than using only a public key on a large mes-
sage.

Q: How can role changes be expressed in an access control matrix?

A: Roles, or protection domains in general, can be viewed as objects with
basically a single operation: enter. Whether or not this operation can be
called depends on the role from which the request is issued. More sophisti-
cated approaches are also possible, for example, by allowing changes back to
previous roles.

Q: How are ACLs implemented in a UNIX file system?

A: Each file has three associated entries: one for the owner, one for a group
that is associated with the file, and one for everyone else. For each entry, the
access rights can essentially be specified as read, write, execute.

Q: How can an organization enforce the use of a Web proxy gateway and
prevent its users to directly access external Web servers?

40

14

15

16

17

PROBLEM SOLUTIONS FOR CHAPTER 8

A: One way is to use a packet-filtering gateway that discards all outgoing
traffic except that directed to a few, well-known hosts. Web traffic is accepted
provided it is targeted to the company’s Web proxy.

Q: Referring to Fig. 8-29, to what extent does the use of Java object refer-
ences as capabilities actually depend on the Java language?

A: It is independent of the Java language: references to secured objects still
need to be handed out during runtime and cannot be simply constructed. Java
helps by catching the construction of such references during compile time.

Q: Name three problems that will be encountered when developers of inter-
faces to local resources are required to insert calls to enable and disable
privileges to protect against unauthorized access by mobile programs as
explained in the text.

A: An important one is that no thread switching may occur when a local
resource is called. A thread switch could transfer the enabled privileges to
another thread that is not authorized to access the resource. Another problem
occurs when another local resource needs to be called before the current invo-
cation is finished. In effect, the privileges are carried to the second resource,
while it may happen that the caller is actually not trusted to access that
second resource. A third problem is that explicitly inserting calls to enable
and disable privileges is suspect to programming errors, rendering the
mechanism useless.

Q: Name a few advantages and disadvantages of using centralized servers for
key management.

A: An obvious advantage is simplicity. For example, by having N clients
share a key with only a centralized server, we need to maintain only N keys.
Pairwise sharing of keys would add up to N(N — 1)/2 keys. Also, using a cen-
tralized server allows efficient storage and maintenance facilities at a single
site. Potential disadvantages include the server becoming a bottleneck with
respect to performance as well as availability. Also, if the server is comprom-
ised, new keys will need to be established.

Q: The Diffie-Hellman key-exchange protocol can also be used to establish a
shared secret key between three parties. Explain how.

A: Suppose Alice, Bob, and Chuck want to set up a shared secret key based
on the two publicly known large primes »n and g. Alice has her own secret
large number x, Bob has y, and Chuck has z. Alice sends g* mod n to Bob;
Bob sends g¥ mod n to Chuck; and Chuck sends g* mod n to Alice. Alice can
now compute g** mod n, which she sends to Bob. Bob, in turn, can then com-
pute g% mod n. Likewise, after receiving g* mod n from Alice, Bob can
compute g% mod n, which he sends to Chuck. Chuck can then compute

18

19

20

21

22

23

PROBLEM SOLUTIONS FOR CHAPTER 8 41

8% mod n. Similarly, after Chuck receives g mod n from Bob, he computes
g% mod n and sends that to Alice so that she can compute g% mod n.

Q: There is no authentication in the Diffie-Hellman key-exchange protocol.
By exploiting this property, a malicious third party, Chuck, can easily break
into the key exchange taking place between Alice and Bob, and subsequently
ruin the security. Explain how this would work.

A: Assume Alice and Bob are using the publicly known values » and g. When
Alice sends g* mod n to Bob, Chuck need simply intercept that message,
return his own message g° mod n, and thus make Alice believe she is talking
to Bob. After intercepting Alice’s message, he sends g* mod n to Bob, from
which he can expect g mod n as reply. Chuck is now in the middle.

Q: Give a straightforward way how capabilities in Amoeba can be revoked.

A: The object’s owner simply requests that the server discard all registered
(rights, check)-pairs for that object. A disadvantage is that all capabilities are
revoked. It is difficult to revoke a capability handed out to a specific process.

Q: Does it make sense to restrict the lifetime of a session key? If so, give an
example how that could be established.

A: Session keys should always have a restricted lifetime as they are easier to
break than other types of cryptographic keys. The way to restrict their life-
time is to send along the expiration time when the key is generated and distri-
buted. This approach is followed, for example, in SESAME.

Q: What is the role of the timestamp in message 6 in Fig. 8-38, and why does
it need to be encrypted?

A: The timestamp is used to protect against replays. By encrypting it, it
becomes impossible to replay message 6 with a later timestamp. This exam-
ple illustrates a general application of timestamps in cryptographic protocols.

Q: Complete Fig. 8-38 by adding the communication for authentication
between Alice and Bob.

A: Alice sends to Bob the message M=[Kp 45(A,K; g), Ky p(1)], where Kp 45 is
the secret key shared between Bob and the AS. At that point, Bob knows he is
talking to Alice. By responding with Kj p(z + 1), Bob proves to Alice that he
is indeed Bob.

Q: Consider the communication between Alice and an authentication service
AS as in SESAME. What is the difference, if any, between a message
my = Kis(Ky as(data)) and m; = Ky 45(Kis(data))?

A: Message m; must be decrypted by the authentication service, but results
in a message that both the authentication service and Alice can understand.

42

24.

25,

PROBLEM SOLUTIONS FOR CHAPTER 8

With message m,, the authentication service or Alice must first decrypt the
message, but only the authentication service can understand its content. In
this respect, the two messages are quite different.

Q: Define at least two different levels of atomicity for transactions in elec-
tronic payment systems.

A: Money atomicity is what we defined in the text: the actual payment should
take place entirely, or should fail altogether. A coarser grain of atomicity is
goods atomicity. In that case, the whole transaction succeeds if and only if the
purchased goods are delivered and paid for.

Q: A customer in an e-cash system should preferably wait a random time
before using coins it has withdrawn from the bank. Why?

A: Otherwise, the bank may start noticing a relation between deposited coins
and the fact that withdrawals from that specific user are taking place. This
would violate anonymity.

26. Q: Anonymity of the merchant in any payment system is often forbidden.
Why?

A: It is often legally required to know the payee to warrant against the pur-
chase of stolen goods.

27. Q: Consider an electronic payment system in which a customer sends cash to
a (remote) merchant. Give a table like the ones used in Figs. 8-44 and 8-0
expressing the hiding of information.

A:
Information
Merchant | Customer Date Amount Item
Merchant Full Partial Full Full Full
Party | Customer Full Full Full Full Full
Bank None None None None None
Observer Full Full Full None None

1.

&

o

43
SOLUTIONS TO CHAPTER 9 PROBLEMS

Q: Why is it useful to define the interfaces of an object in an Interface
Definition Language?

A: There are several reasons. First, from a software-engineering point of
view, having precise and unambiguous interface definitions is important for
understanding and maintaining objects. Furthermore, IDL-based definitions
come in handy for generating stubs. Finally, and related to the latter, if an
IDL definition has been parsed and stored, supporting dynamic invocations
becomes easier, as the client-side proxy can be automatically constructed at
runtime from an interface definition.

Q: Give an example in which CORBA’s dynamic invocation mechanisms
come in handy.

A: When a process implements a gateway between two different ORBs, it can
dynamically construct an invocation for an object at the target ORB without
knowing in advance what that object actually looks like. Instead, it can find
out dynamically.

Q: Which of the six forms of communication discussed in Sec. 2.4 are sup-
ported by CORBA’s invocation model?

A: Transient asynchronous communication (by means of CORBA one-way
requests) and response-based transient synchronous communication (by
means of CORBA synchronous requests). Deferred synchronous request can
be viewed as a combination of two one-way requests, possibly with a block-
ing client waiting for the response.

Q: Outline a simple protocol that implements at-most-once semantics for an
object invocation.

A: A simple solution is to let a proxy retransmit an invocation request, but
telling the server explicitly that it is a retransmission. In that case, the server
may decide to ignore the request and return an error to the client. In a more
sophisticated solution, the server can cache results of previous invocations
and check whether it still has those results when receiving a retransmitted
request.

Q: Should the client and server-side CORBA objects for asynchronous
method invocation be persistent?

A: In general, they should be persistent, allowing the client or server to shut
down and later restart and fetch the objects from disk. However, in theory,
there is no hard reason to demand that these objects should be persistent.

Q: In a GIOP Reguest message, the object reference and method name are
part of the message header. Why can they not be contained in the message
body only?

4

10

11.

PROBLEM SOLUTIONS FOR CHAPTER 9

A: The server will need to demultiplex incoming messages to the appropriate
object adapter. It can only look at message headers as it should know nothing
about the actual invocation. Demultiplexing can be done on an object refer-
ence alone, but further demultiplexing may be needed by also looking at the
method that is to be invoked.

Q: Does CORBA support the thread-per-object invocation policy that we
explained in Chap. 37

A: Yes, although it can be done only by associating a single object per POA,
which in turn should provide the single-threading policy. In other cases, the
thread-per-object policy depends on what the underlying ORB provides.

Q: Consider two CORBA systems, each with their own naming service. Out-
line how the two naming services could be integrated into a single, federated
naming service.

A: Integration can be straightforward. Because naming contexts are regular
objects, a naming context in a foreign name space can be registered under a
specific name in the naming graph. Resolving that name will return an IOR
referring to the foreign naming context. To a client, a regular object reference
is returned for which it can invoke the resolve method as usual.

Q: In the text, we state that when binding to a CORBA object, additional
security services may be selected by the client ORB based on the object refer-
ence. How does the client ORB know about these services?

A: In principle, they are encoded as part of an IOR, for example, in the Com-
ponents field of a tagged profile. Such information can be made available by
the object itself when its associated object server (or rather, POA) generates
its IOR.

Q: If a CORBA ORB uses several interceptors that are not related to security,
to what extent is the order in which interceptors are called important?

A: It really depends, but in general, if security is needed, most interceptors (at
the client side) will be called after calling the access control interceptor, but
certainly before the secure invocation interceptor. The latter is strictly
required because the secure invocation interceptor produces encrypted mes-
sages in which only the destination is visible. Any modification to such a
message will lead to a fault when checked for integrity.

Q: Illustrate how a transactional queue can be part of a distributed transaction
as mentioned in the text.

A: In this case, an application may need to send and receive messages from
components running on other machines, and which possibly need to access
local databases. By turning the operations on a transactional queue into a
nested transaction, and likewise using nested transactions for the other groups
of operations, it becomes possible to construct one big distributed transaction.

PROBLEM SOLUTIONS FOR CHAPTER 9 45

12. Q: In comparing DCOM to CORBA, does CORBA provide standard

13

14

15

marshaling or custom marshaling? Discuss.

A: CORBA provides standard marshaling, but allows customization of prox-
ies and skeletons by means of interceptors. In this sense, custom marshaling
in DCOM can be seen as a work-around for the lack of general interception
techniques. However, there is no reason why a CORBA developer should not
write his own custom proxies, as long as they adhere to language-dependent
mapping of the IDL specifications of the object’s interfaces. The drawback of
this approach, however, is that it requires these custom proxies to be stored in
an interface repository from where they can be retrieved by clients. Unlike
DCOM, CORBA provides no standard support for storing and retrieving cus-
tomized proxies. In DCOM, such matters are handled by the registry.

Q: In DCOM, consider a method m that is contained in interface X, and
which accepts a pointer to interface Y as input parameter. Explain what hap-
pens with respect to marshaling when a client holding an interface pointer to
a proxy implementation of X, invokes m.

A: When m is invoked, the proxy implementing X will have to marshal the
proxy implementing Y. If Y is based on standard marshaling, then, in princi-
ple, only the interface identifier of ¥ needs to be marshaled into the message
comprising the marshaled invocation of m. If Y is based on custom marshal-
ing, X will have to marshal ¥ using the class object associated with Y that
handles the marshaling of Y. The CLSID of that class object is prepended to
the marshaled version of Y in order to allow the receiver to load the appropri-
ate code to unmarshal Y again.

Q: Does custom marshaling in DCOM require that the process receiving a
marshaled proxy runs on the same type of machine as the sending process?

A: No, provided that a marshaled proxy can be represented in a machine-
independent way. A developer of object-specific proxies will have to take this
design issue into account. For example, assume the sending process runs on
an Intel-based Windows machine whereas the receiver is running as a Solaris
process on a SPARC station. When the sender marshals its proxy, it provides
a CLSID identifying the class object that is needed to unmarshal the proxy by
the receiver. When the Solaris implementation of DCOM receives this
CLSID, it will have to be able to load its specific implementation of the
identified class object. That class object is then used to instantiate an object to
unmarshal the proxy and return an interface pointer to the receiving process.
If the proxy can be unmarshaled to something that can be readily understood
by the Solaris implementation of DCOM, then no problems need to occur.

Q: Outline an algorithm for migrating an object in DCOM to another server.

A: The main issues that need to be dealt with is migrating the state o the tar-
get object server, and having each client rebind to the migrated object. One

46

16

17

18

19

20,

PROBLEM SOLUTIONS FOR CHAPTER 9

possible approach is the following. First, a copy of the object is created on the
target server using the object’s CLSID. Then, the state is marshaled and
transferred to the new server, where the newly created object is instructed to
unmarshal that state. The old copy is replaced by an object implementing a
forwarding pointer that offers the same interface as the moved object. Each
time an invocation request is forwarded, the invoking client will be notified
that it should rebind to the object at its new location.

Q: To what extent does JIT activation violate or comply with the notion of
objects?

A: JIT activation essentially assumes that objects have no state. In other
words, an object is reduced to a collection of (stateless) methods. In general,
such collections are hardly considered to resemble objects.

Q: Explain what happens when two clients on different machines use the
same file moniker to bind to a single object. Will the object be instantiated
once or twice?

A: It really depends. If no special measures are taken, two copies of the
object will be constructed and initialized with the data from the same file.
However, with a special DCOM object server and possibly adapted moniker,
it should be possible to create only a single, shared instance.

Q: What would be the obvious way to implement events in Globe without
violating the principle that objects are passive?

A: The best way would be to implement a simple layer on top of Globe
objects in which a thread would occasionally poll the underlying object to see
if any state changes have occurred. Such a thread could then invoke a call-
back interface as provided by a client application. In effect, such an imple-
mentation changes a pull-style model into a push-style model.

Q: Give an example in which the (inadvertent) use of callback mechanisms
can easily lead to an unwanted situation.

A: If a callback leads to another invocation on the same object, a deadlock
may arise if locks are needed to protect shared resources. Situations as these
are very hard to control in a general way.

Q: In CORBA, nodes in naming graph, such as directories, are also con-
sidered as objects. Would it make sense to also model directories as distri-
buted shared objects in Globe?

A: Yes. This is best explained by considering a root directory in a worldwide
naming service. In most cases, the root directory hardly changes. Conse-
quently, its state, which consists of a collection of object references (in the
form of object handles), can be widely replicated. A similar reasoning will
show that for many lower-level nodes, a different approach to replication is

21

22

PROBLEM SOLUTIONS FOR CHAPTER ¢ 47

needed as the update-to-read ratio is very different. These differences can be
dealt with by means of distributed shared objects.

Q: Assume a Globe object server has just installed a persistent local object.
Also, assume that this object offers a contact address. Should that address be
preserved as well when the server shuts down?

A: If the address is not preserved, the server should remove it from the Globe
location service before shutting down. When the object is loaded again, the
server should offer a new address and insert that address into the location ser-
vice. For efficiency reasons, Globe also supports persistent contact addresses
that remain the same even when a server shuts down.

Q: In our example of using Kerberos for security in Globe, would it be useful
to encrypt the ticket with a key shared between the object and the ticket
granting service, instead of the key Kp ror?

At It depends. Using a single object key would allow secure and efficient
multicasting of a shared session key to all replicas. However, because the
object key needs to be shared between all processes that have a replica, we
need to trust that all processes will indeed keep that key a secret.

48

[

(3]

w

SOLUTIONS TO CHAPTER 10 PROBLEMS

Q: Is a file server implementing NFS version 3 required to be stateless?

A: No, but the NFS protocols are such that it is possible to provide an imple-
mentation using stateless servers.

Q: NFS does not provide a global, shared name space. Is there a way to
mimic such a name space?

A: A global name space can easily be mimiced using a local name space for
each client that is partially standardized, and letting the automounter mount
the necessary directories into that name space.

Q: Give a simple extension to the NFS lookup operation that would allow itera-
tive name lookup in combination with a server exporting directories that it mounted
from another server.

A: If a lookup operation always returns an identifier for the server from which
a directory was mounted, transparent iterative name lookups across multiple
servers would be easy. Whenever a server looks up a mount point on which it
mounted a remote file system, it simply returns the server’s ID for that file
system. The client can then automatically mount the directory as well, and
contact its associated server to continue name resolution.

Q: In UNIX-based operating systems, opening a file using a file handle can
be done only in the kernel. Give a possible implementation of an NFS file
handle for a user-level NFS server for a UNIX system.

A: The problem to be solved is to return a file handle that will allow the
server to open a file using the existing name-based file system interface. One
approach is to encode the file name into the file handle. The obvious draw-
back is that as soon as the file name changes, its file handles become invalid.

Q: Using an automounter that installs symbolic links as described in the text
makes it harder to hide the fact that mounting is transparent. Why?

A: After the symbolic link has been followed, the user will not be in the
expected directory, but in a subdirectory used by the automounter. In other
words, the local home directory for Alice will be /mmp_mnt/home/alice
instead of what she thinks it is, namely /home/alice. Special support from the
operating system or shell is needed to hide this aspect.

Q: Suppose the current denial state of a file in NFS is WRITE. Is it possible
that another client can first successfully open that file and then request a write
lock?

A: Yes. If the second client requires read/write access (i.e., value BOTH) but
no denial (i.e., value NONE), it will have been granted access to the file.
However, although a write lock may actually be granted, performing an

8

9

10

11

12

PROBLEM SOLUTIONS FOR CHAPTER 10 49

actual write operation will fail. Remember that share reservation is com-
pletely independent from locking.

Q: Taking into account cache coherence as discussed in Chap. 6, which kind
of cache-coherence protocol does NFS implement?

A: Because multiple write operations can take place before cached data is
flushed to the server, NFS clients implement a write-back cache.

Q: Does NFS implement entry consistency? What about release consistency?

A: Yes. Because share reservations and file locking are associated with
specific files, and because a client is forced to revalidate a file when opening
it and flush it back to the server when closing it, it can be argued that NFS
implements entry consistency. Note that this scheme also comes close to
eager release consistency, except that not all files need to be flushed, as would
be the case with release consistency, which, by definition, works on all shared
data.

Q: We stated that NFS implements the remote access model to file handling.
It can be argued that it also supports the upload/download model. Explain
why.

A: Because a server can delegate a file to a client, it can effectively support
whole-file caching and putting that client in charge of further handling of the
file. This model comes close to uploading a file to a client and downloading it
later when when the client is finished.

Q: In NFS, attributes are cached using a write-through cache coherence pol-
icy. Is it necessary to forward all attributes changes immediately?

A: No. For example, when appending data to a file, the server does not really
need to be informed immediately. Such information may possibly be passed
on when the client flushes its cache to the server.

Q: To what extent will the duplicate-request cache as described in the text
actually succeed in implementing at-most-once semantics?

A: Although the scheme will generally work, there are still numerous prob-
lems. For example, the duplicate-request cache is often implemented in vola-
tile memory. Consequently, when the server crashes, the cache is lost, which
may eventually lead to processing duplicate requests when the server later
recovers. Another problem is that cache entries, in general, will eventually
need to be removed to make space for new requests. To do this safely, the
client should acknowledge previous replies, possibly by piggybacking ACKs
on next requests.

Q: In NFS, what kind of security measures can be taken to prevent a mali-
cious client from reclaiming a lock it never was granted when a server enters
its grace period?

PROBLEM SOLUTIONS FOR CHAPTER 10

A: One simple solution is to pass an attribute certificate to a client when it
first claims a lock. That certificate should be shown again when reclaiming
the lock later.

Q: Fig. 10-21 suggests that clients have complete transparent access to Vice.
To what extent is this indeed true?

A: All issues concerning file access and caching are handled by Venus, so in
that sense, user processes can indeed remain unaware of the organization of
servers and the placement of volumes. However, when disconnected, it may
be impossible to achieve failure transparency if it turns out that a file is not in
the cache, or that a conflict needs to be manually resolved.

Q: Using RPC2’s side effects is convenient for continuous data streams. Give
another example in which it makes sense to use an application-specific proto-
col next to RPC.

A: File transfer. Instead of using a pure RPC mechanism, it may be more
efficient to transfer very large files using a protocol such as FTP.

Q: If a physical volume in Coda is moved from server A to server B, which
changes are needed in the volume replication database and volume location
database?

A: The volume location database needs to be updated with the new location.
No other changes are needed.

Q: What calling semantics does RPC2 provide in the presence of failures?

A: Considering that the client will be reported an error when an invocation
does not complete, RPC2 provides at-most-once semantics.

Q: Explain how Coda solves read-write conflicts on a file that is shared
between multiple readers and only a single writer.

A: The problem is solved by “defining it away.” The semantics of transac-
tions underlying file sharing in Coda, permit treating all readers as accessing
the shared file before the writer opened it. Note that read-write conflicts
within a specific time interval cannot be solved in this way.

Q: In Coda, is it necessary to encrypt the clear token that Alice receives from
the AS when she logs in? If so, where does encryption take place?

A: Yes, otherwise the session key in the clear token can be seen by any other
process. Encryption takes place as part of the secure RPC. As is also shown in
Fig. 10-32, after mutual authentication between Alice and the AS has taken
place, the AS generates a session key as part of secure RPC that is used to
encrypt the clear token when returning it to Alice.

Q: If a file on a Vice server needs its own specific access control list, how
can this be achieved?

PROBLEM SOLUTIONS FOR CHAPTER 10 51

A: A solution is to create a separate directory containing only that file, and to
associate the required access control list with that directory. If necessary, a
symbolic link to the file can be created in the directory where that file logi-
cally belongs.

Q: Does it make sense for a Vice server to offer only WRITE permissions on
a file? (Hint: consider what happens when a client opens a file.)

A: No. The point is that in Coda, whenever a client opens a file, it receives a
copy of that file to cache. This effectively already gives it READ permission.
Only a Venus process may possibly enforce write-only permission, but in that
case, Vice servers will need to trust clients.

Q: Can union directories in Plan 9 replace the PATH variable in UNIX Sys-
tems?

A: Yes. By mounting various file systems in a specific order at the same
mount point, and subsequently looking only for executables at that mount
point, there is no need to look in any other subdirectory.

Q: Can Plan 9 be efficiently used as wide-area distributed system?

A: Without modifications, probably not. An important obstacle is keeping
files at a server and using a write-through caching policy. In effect, all update
operations need to be passed between a client and the server, which intro-
duces a considerable latency in the case of wide-area networks.

Q: What is the main advantage of using stripe groups in xFS compared to the
approach in which a segment is fragmented across all storage servers?

A: The main advantage is scalability. In a system with many servers, writing
a segment requires that all servers are contacted. Using stripe groups, it
becomes possible to limit the size of a group and in this way also limits the -
amount of network traffic and servers that need to be contacted.

Q: Using self-certifying path names, is a client always ensured it is communi-
cating with a nonmalicious server?

A: No. SFS does not solve naming problems. In essence, a client will have to
trust that the server named in the path can actually be trusted. In other words,
a client will have to put its trust in the name and name resolution process. It
may very well be the case that a malicious SFS server is spoofing another
server by using its IP address and passing the other server’s public key.

52

1.

a

SOLUTIONS TO CHAPTER 11 PROBLEMS

Q: To what extent is e-mail part of the Web’s document model?

A: E-mail s not part of the document model underlying the Web, but rather a
separate system that has been integrated with hypertext documents by means
of client-side software only. For example, most Web browsers provide addi-
tional support for handling e-mail, but the actual e-mail messages are not
related to hypertext documents in any way.

Q: The Web uses a file-based approach to documents by which a client first
fetches a file before it is opened and displayed. What is the consequence of
this approach for multimedia files?

A: One of the problems is that in many cases such files are first fetched and
stored locally before that can be opened. What is needed, however, is to keep
the file at the server and set up a data stream to the client, This approach is
supported in the Web, but requires special solutions at both the client and the
Server.

Q: Why do persistent connections generally improve performance compared
to nonpersistent connections?

A: The real gain is in avoiding connection setup, which requires a 3-way
handshake in the case of TCP.

Q: Explain the difference between a plug-in, an applet, a servlet, and a CGI
program.

A: A plug-in is a piece of code that can be dynamically loaded from a
browser’s local file system. In contrast, an applet is dynamically downloaded
from the server to the browser, for which reason security is generally more
important. Note that many plug-ins can be dynamically downloaded as well,
but generally not without manual interference by the user. A servlet is com-
parable to a plug-in, but is entirely handled at the server side. A CGI program
is a piece of code that runs in a separate process on the same machine as the
server.

Q: Outline the design of a general-purpose URN-to-URL naming service, that
is, a service that resolves a URN to the URL of a copy of a document named
by the URN.

A: Such a service has already been discussed in Chap. 4, namely a worldwide
hierarchical location service. Instead of using object identifiers as input, the
service accepts a URN and looks up the URL of the “nearest” copy of the
named document.

Q: In WebDAV, is it sufficient for a client to show only the lock token to the
server in order to obtain write permissions?

N

10

11.

PROBLEM SOLUTIONS FOR CHAPTER 11 53

A: No, the client should also identify itself as the rightful owner of the token.
For this reason, WebDAV not only hands over a token to a client, but also
registers which client has the token,

Q: Instead of letting a Web proxy compute an expiration time for a docu-
ment, a server could do this instead. What would be the benefit of such an
approach?

A: An important benefit would be that the expiration time is consistent in a
hierarchy of caches. For example, if a browser cache computes a longer
expiration time than its associated Web proxy, this would mean that one user
would get to see a possibly stale document, while other users that access the
same proxy are returned a fresher version.

Q: Does the Akamai CDN follow a pull-based or push-based distribution pro-
tocol?

A: Because replicas are fetched on demand after a client has been redirected
to a CDN server, Akamai is seen to follow a pull-based protocol.

Q: Outline a simple scheme by which an Akamai CDN server can find out
that a cached embedded document is stale without checking the document’s
validity at the original server.

A: A simple approach followed by Akamai is to include a hash value of the
embedded document in its modified URL. It is important to realize that any
client will always retrieve all modified URLs when fetching the main docu-
ment. Subsequent lookups will eventually lead to a CDN server, which can
then conclude that a cached document is no longer valid by comparing hash
values in the modified URL of the requested and the cached document,
respectively.

Q: Would it make sense to associate a replication strategy with each Web
document separately, as opposed to using one or only a few global strategies?

A: Probably, considering the wide variety of usage patterns for Web docu-
ments. Many documents such as personal home pages, are hardly ever
updated, and if so, they are updated by only a single person, making these
documents suitable for caching and replication. Dynamically generated docu-
ments containing timely information require a different strategy, especially if
they need to be replicated for performance. Note that the current Web can
hardly differentiate such documents.

Q: URLs in Notes contain an identifier of a document, To what extent is this
an improvement compared to the file names used in the Web?

A: The main improvement is that even if a document changes its (local)
name, this change will not make its URL invalid as would be the case in the
Web. The only requirement is that the database name remains the same. Note
in this respect, that most URLs in the Web become invalid not because a

54

12

13

14

15.

16.

17.

PROBLEM SOLUTIONS FOR CHAPTER 11

document is moved to another server, but only because their local name is
changed.

Q: Does the URL scheme in Notes imply that operations are uniquely named
worldwide?

A: In fact, yes. Because operations are accessed only at a particular database,
which is accessed through a globally unique identifier, one could argue that
operations are also uniquely named.

Q: Consider a cluster of Domino servers and suppose a Notes client contacts
a busy Domino server in this cluster for the first time. Explain what happens.

A: Because the client contacts the server for the first time, we can assume it
knows nothing about the cluster the server is part of. Consequently, it cannot
contact another server and the client’s request will have to be deferred until a
later time.

Q: In the text, we described a conflict between two modified Notes docu-
ments. It is also possible that a conflict arises between a deleted copy and a
modified one. Explain how this conflict arises and how it can be resolved.

A: The conflict is easily explained by considering deletion as a special
modify operation, leaving only a deletion stub behind. If the other copy is
subsequently modified more than once, one can argue that this “undoes” the
deletion. However, if there is exactly one modification opposed to the dele-
tion, it is harder to decide which operation should prevail. In this case, Notes
follows the policy of removing the document.

Q: To what extent can write-write conflicts occur in the case of cluster repli-
cation in Notes?

A: Cluster replication differs only from the general replication scheme in the
frequency by which updates are propagated. Conflict detection and resolution
is exactly the same. However, because the time during which replicas are not
synchronized is much smaller, there will generally be much fewer conflicts to
resolve compared to general replication.

Q: Give an alternative solution to using cross-certificates in Notes.

A: Instead of using cross-certificates, two organizations could use a trusted
third party that hands out certificates. In other words, they could make use of
a certification authority.

Q: Executing downloaded code in Notes is often based on trust. Is this safe?

At In principle, no. However, Notes provides strong authentication and access
control to shared databases. In other words, it is not as open as, for example,
the Web. In this sense, it is generally safer provided trust can be put into
proper system administration.

1.

b

55

SOLUTIONS TO CHAPTER 12 PROBLEMS

Q: What type of coordination model would you classify the message-queuing
systems discussed in Chap. 27

A: Considering that in message-queuing systems processes are temporally
uncoupled, but will otherwise have to agree on message format and destina-
tion queues, they classify as mailbox coordination models.

Q: Referential uncoupling in TIB/Rendezvous is supported by subject-based
addressing. What else contributes to referential uncoupling in this system?

A: The fact that messages are self describing. In that way, there is no need for
processes to agree in advance to the format of the messages they exchange.
Instead, a receiving process can dynamically determine what an incoming
message actually contains. Of course, semantical issues are still left to the
application.

Q: Outline an implementation of a publish/subscribe system based on a
message-queuing system like that of IBM MQSeries.

A: Such an implementation can be accomplished by using a message broker.
All publish/subscribe messages are published to the broker. Subscribers pass
their subscriptions to the broker as well, which will then take care to forward
published messages to the appropriate subscribers. Note that the broker makes
use of the underlying message-queuing network.

Q: To what is a subject name in TIB/Rendezvous actually resolved, and how
does name resolution take place?

A: A name is resolved to the current group of subscribers. Name resolution
takes place by properly routing message to those subscribers. In
TIB/Rendezvous, routing takes place through a combination of multicasting
and filtering messages at rendezvous and router daemons.

Q: Outline a simple implementation for totally-ordered message delivery ina
TIB/Rendezvous system.

A: Use a sequencer to which all messages are sent. Subscribers pass subscrip-
tions to this sequencer. The FIFO-ordered message delivery of the
TIB/Rendezvous system will then guarantee that all messages multicast by
the sequencer are delivered to every subscriber in the same order.

Q: When a message is delivered to a process P as part of a TIB/Rendezvous
transaction, P confirms that delivery. Is it possible for the transaction layer at
P 10 automatically send a confirmation to the transaction daemon?

A: Yes, it could. When a message is delivered to P as part of a transaction,
what happens is that the message is removed from an event queue local to P.

56

10

11.

PROBLEM SOLUTIONS FOR CHAPTER 12

Removal of a message can be interpreted by the transaction layer as delivery,
so that it can automatically send a confirmation to the transaction daemon.

Q: Assume a process is replicated in a TIB/Rendezvous system. Give two
solutions to avoid so that messages from this replicated process are not pub-
lished more than once.

A: A first solution is to attach a message identifier to each published message,
and to let subscribers discard duplicates by taking a look at the identifiers.
The main drawback of this approach is the waste of network bandwidth.
Another solution is to assign a coordinator among the replicas, and let only
the coordinator actually publish messages. This solution is similar to assign-
ing a coordinator in the case of invocations with replicated distributed
objects.

Q: To what extent do we need totally-ordered multicasting when processes
are replicated in a TIB/Rendezvous system?

A: Assuming that duplicate messages are either detected by subscribers, or
avoided altogether, total ordering is not an issue at all. In this case, the FIFO-
ordering delivery semantics are sufficient to let subscribers process the mes-
sages in the order they were published by the replicated process.

Q: Describe a simple scheme for PGM that will allow receivers to detect
missing messages, even the last one in a series.

A: A simple scheme is to use sequence numbers. Whenever a sender has no
more data to send, it should announce by multicasting a special control mes-
sage. If that control message is lost, a receiver will start complaining in the
usual way. The sender can then simply retransmit the control message. In
essence, this is also the solution adopted in PGM.

Q: Can ledgers in TIB/Rendezvous that are implemented as files guarantee
that messages are never lost, even in the presence of crashing processes?

A: No. If a ledger is not flushed to disk before the sending process crashes,
messages may be lost that later require retransmission by a receiver. The idea
of certified message delivery is to increase the reliability of message delivery.
By no means is it a solution to 100 percent guaranteed delivery.

Q: How could a coordination model based on generative communication be
implemented in TIB/Rendezvous?

A: This is actually not very difficult. What makes TIB/Rendezvous different
from, for example, the JavaSpaces in Jini, is that processes are still tem-
porally coupled. If published messages are temporarily stored, it would be
possible for subscribers to read them even when the publisher of messages no
longer exists. What is needed is for each subscriber to record a published
message that it has already read, so that receiving duplicates can be avoided.

PROBLEM SOLUTIONS FOR CHAPTER 12 57

12. Q: Apart from the temporal uncoupling in Jini, in your opinion, what is the

13

14

15

16

most important difference between Jini and TIB/Rendezvous when consider-
ing coordination models?

A: An important difference is the fact that TIB/Rendezvous uses character-
string naming to match publishers and subscribers, whereas JavaSpaces uses
marshaled object references. Another important difference is that JavaSpaces
allows tuple instances to be removed upon reading, thus providing a means to
synchronize processes. A comparable facility is not available in
TIB/Rendezvous.

Q: A lease period in Jini is always specified as a duration and not as an abso-
lute time at which the lease expires. Why is this done?

A: Especiaily in wide-area systems, it may happen that clocks on different
machines give very different times. In that case, specifying the expiration of a
lease as an absolute time is simply too inaccurate as the holder of the lease
may have a very different idea when the lease expires than the processes that
handed out the lease. With durations, this difference becomes less an issue,
provided some guarantees can be given that the transmission time of a lease is
relatively low.

Q: What are the most important scalability problems in Jini?

A: One important problem is related to the fact the Jini uses a multicast proto-
col to locate lookup services. In a wide-area system, this protocol will have to
be replaced by something different if Jini is to scale to large numbers of users
and processes. A second problem is related to matching templates to tuples in
JavaSpaces. Again, special measures will be needed to search a JavaSpace
that may be potentially distributed across a large-scale network. No efficient
solutions to these problems are yet known.

Q: Consider a distributed implementation of a JavaSpace in which tuples are
replicated across several machines. Give a protocol to delete a tuple such that
race conditions are avoided when two processes try to delete the same tuple.

A: Use a two-phase commit protocol. In phase one, the process doing the
delete sends a message to all the JavaSpace servers holding the tuple asking
them to lock the tuple. When all of them are locked, the delete is sent. If a
second delete happens simultaneously, it can happen that some servers have
locked one tuple and some have locked the other. If a server cannot grant a
request because the tuple is already locked, it sends back a negative acknowl-
edgement, which causes the initiator to abort the delete, unlock all the tuples
it has locked, wait a random time, and try again later.

Q: Suppose a transaction T in Jini requires a lock on an object that is
currently locked by another transaction 7. Explain what happens.

58

17

18

19.

PROBLEM SOLUTIONS FOR CHAPTER 12

A: Transaction T will continue to block until the lock is either released or
until the lease on the transaction expires. In the latter case, transaction 7 is
simply aborted.

Q: Suppose a Jini client caches the tuple it obtained from a JavaSpace so that
it can avoid having to go to the JavaSpace the next time. Does this caching
make any sense?

A: Caching is senseless because the tuple will have been removed from the
JavaSpace when it was returned; it is ready for the client to keep. The main
idea behind caching is to keep data local to avoid another server access. In the
case of Jini, a JavaSpace is often used to explicitly synchronize processes.
Caching does not play a role when process synchronization is explicitly
needed.

Q: Answer the previous question, but now for the case that a client caches the
results returned by a lookup service.

A: This is a completely different situation. The lookup service stores informa-
tion on the whereabouts of services. In this case, it may indeed make sense
for a client to cache previously returned results and try to contact the returned
services before going to the lookup service again,

Q: Outline a simple implementation of a fault-tolerant J avaSpace.

A: The simplest approach is to implement a JavaSpace on a single server with
stable storage. Write operations succeed only if the tuple has been safely writ-
ten to storage. In a more advanced setting, a distributed JavaSpace can be
used in which a server group is used to mask process failures. In that case, the
servers may need to follow a two-phase commit protocol for each write
operation.

