
Faculteit der Exacte Wetenschappen Tentamen Ontwerp van Multi-agentsystemen

Vrije Universiteit Amsterdam 21 december 2001

Question 1 2 3 4 5 bonus

Points 25 25 20 10 10 10

Norm:
Let Pi stand for the points for question i. Then the examination grade

T = (P1 + P2 + P3 + P4 + P5 + 10) / 10.
The end grade for Design of Multi-Agent Systems is calculated as follows:

End grade = (T + H + P) / 3,
where
T = examination grade,
H = homework grade,
P = grade for 1 study point practical work.

You are kindly requested to use the special answer sheet for your answer where
indicated.

Question 1 (25 punten)
Read Appendix 1 and answer the following questions.
a) (5 points) Provide a graphical representation of the top-level of process

abstraction for the MOBIE system. Include the human customers as agents in that
picture. Motivate each link between processes, and explain the type of information
exchanged.

b) (10 points) The generic agent model of Chapter 6 consists of 7 components:
agent_interaction_management, world_interaction_management,
maintenance_of_agent_information, maintenance_of_world_information, own_process_control,
and agent_specific_task. Which of these components do you need and which do you
not need to model a personal assistant agent of the MOBIE system? Motivate your
answer and make explicit references to the text of Appendix 1.

c) (10 points) The process of interaction that the personal agent needs is rather
complicated. The type of communication that it needs with the human customers
is rather different from that with the other software agents. Furthermore, for
communication with the human user it has different channels. Suppose that
component comp_c of the agent is responsible for all this. Then component comp_c
should be composed. Provide a process composition of comp_c and the links
needed within comp_c to model these processes. Motivate your answers in a
rationale.

Question 2 (25 points)
This question builds on your understanding of the generic model for Reasoning with
and about Assumptions (Chapter 11). For your convenience a rather detailed partial
specification of that model is given in Appendix 3. Be careful to focus directly on the
parts of the specification that you need, so that you don't waste time. This generic
model will be used in this exercise to diagnose the health problems of a dog. Read
Appendix 2 "Dog's Health Problem".
a) (10 points) Give a knowledge base for component assumption_determination that

reflects the knowledge in Appendix 2. Motivate your answer in a rationale.
b) (10 points) Give a knowledge base of component observation_result_prediction that

reflects the knowledge in Appendix 2. Motivate your answer in a rationale.
c) (5 points) Design the information types causes and symptoms for this domain. You

can do this in one information type, but you are also allowed to make more levels
of abstraction. Motivate your answers, refer back to your answers to questions a)
and b) as well.

Question 3 (20 points)
For this question the partial specification of Appendix 3 is used again. Suppose that
the information types causes and symptoms are specified as follows:

information type causes
relations a;
end information type

information type symptoms
relations b;
end information type

a) (10 points) Consider information link predictions of the specification. Consider the

following information states:

output information state of component observation_result_prediction is

 [predicted_for(b, pos, a, pos)].

input information state of component assumption_evaluation is

 [assumed(a, pos), predicted_for(b, neg, a, pos)]

Give the input information state of component assumption_evaluation after execution

of link predictions on the basis of the above information states.

b) (10 points) Give a trace of the behaviour of component assumption_evaluation given

that the subsequent input information states of that component are as is

presented in Table 1. Use the answer sheet and fill in your answer in Table 1.

Question 4 (10 points)
a) (3 points) Explain the difference between object and meta-level information, give

examples.
b) (4 points) In the weak notion of agenthood, the process has to satisfy four

characteristics before it is can be called an agent. Name those 4 characteristics. If
you are unsure of the correct terms, you can also explain in words what the four
are.

c) (3 points) When is a process an agent in your opinion? Motivate your answer.
Keep your answer short; at most 100 words.

Question 5 (10 points)
Consider the following information type:

information type insect_stuf
sorts BEE, INSECT;
subsorts BEE : INSECT;
objects a, b: BEE;
 c, d: INSECT;
relations can_fly, is_a_bee, is_a_spider: INSECT;

end information type

And the following knowledge base:

knowledge base insect_kb
information types insect_stuf

contents
is_a_bee(X: BEE);
if not can_fly(X: INSECT) then not is_a_bee(X: INSECT);
if is_a_spider(X: INSECT) then not can_fly(X: INSECT);
is_a_spider(c);

end knowledge base
Give a minimal refinement of information state [] that is both closed and consistent
with respect to the knowledge base insect_kb.

Appendix 1 The MOBIE system
Prepay usage as a percentage of overall mobile (also called cell) phone access has
increased sharply over the past several years. However, the recharging process is still
largely manual with personalization provided by the user. A system is needed capable
of automatically recharging the prepaid account of a mobile phone in a personalized
manner. This visionary system is called MOBIE. The MOBIE multi-agent system
consists of personal assistant agents for the consumers and business agents for the
mobile telecommunication service providers. The MOBIE system has to take care of
the personalization of the agents, security, and human agent interaction modalities.
To accommodate the automated recharging process for the user the mobile phone
service providers need to be able to interact with the personal assistant agents in a
reliable and secure manner. Because of the expected high frequency of such
interactions the service providers need to automate these customer interactions. The
option chosen in this paper is to introduce business agents that are capable of the
required interactions with the personal agents of the users. The personal assistant
agent that represents the customer is capable of the following main tasks.

1. The personal agent creates and maintains a profile of the customer. The profile
contains at least:

a. The criteria that tell the agent when to recharge the account.
b. The information needed to execute recharging, like the amounts it can

use, and payment information.
2. The personal agent matches the criteria against the actual balance of the

prepaid account.
3. The personal agent requests the necessary information from the business such

as:
a. The balance of the prepaid account.
b. The actual usage pattern of the phone for a specified period of time.

4. The personal agent is capable of recharging the prepaid account.
5. The personal agent can ask the telecom companies (through the business

agents that represent them) to recharge the prepaid account with amount x.
6. The personal agent is responsible for keeping the customer informed in

accordance to the customer profile.
7. The personal agent is able to interact with the customer through different

channels:
a. web-based,
b. WAP (for those customers that have a WAP enabled mobile phone)
c. voice. Due to inherent restrictions of current WAP implementations

and of mobile devices in general, we think that a voice-enabled
interface has high potential.

The personal assistant agents function within MOBIE in an environment consisting of
business agents that represent the different telecom companies, and financial
institutions (like banks, with whom the actual payment is to be arranged). The
personal assistant agents do not contact the financial institutions themselves. They can
ask telecom company to recharge the prepaid account, the telecom company will then
contact the appropriate financial institution.

Appendix 2 Dog's Health Problem
Consider the following situation, which involves two agents, an owner of a dog
(Owner) and a vet (Vet). Owner, who is always interested in keeping his dog healthy,
observes that his dog is sitting apathetic in a corner, not playing. Owner identifies this
as a problem with the dog’s health.
As he is not able to find out himself what the cause of this problem is, he decides to
call Vet and ask him to find out the cause of the dog’s health problem.
A specific responsibility of Vet is to make a diagnosis of health problems of his
animal patients communicated to him by phone. Vet has no possibility to observe the
dog, therefor he asks Owner to make certain observations and communicate them
back to Vet.
To determine the dog's problem, Vet uses a line of reasoning modelled by the generic
model for reasoning with and about assumptions (see Appendix 3). That model
proceeds along the following lines: making assumptions (in some kind of order),
predicting observation results for that assumption, and then evaluating the assumption
by making the appropriate observations and comparing them to the assumption. If
necessary, the old assumptions are rejected, and new ones are made.

Vet uses the hierarchy (taxonomy) depicted in Figure 1 of the subproblems of
dog’s health problem, that he uses to efficiently order the assumptions he can make:

Dog’s health
problem

Digestive problem

Respiratory problem

Stomach infection

Broken tooth

Sore throat

Asthma
Figure 1

Vet can instruct Owner to make the following observations:
• whether or not the dog eats
• whether or not the dog is wheezing
• whether or not the dog has a fever
The causal relations between diseases and observations known to Vet are depicted in
Figure 2.

Stomach infection

Broken tooth

Sore throat

Asthma

Wheezing

Feever

Not eating

Figure 2

Appendix 3 Reasoning with and about assumptions

information types

information type truth_indication
 sorts SIGN
 objects pos, neg: SIGN
end information type

information type obs_to_be_performed
 sorts INFO_ELEMENT
 relations to_be_observed: INFO_ELEMENT ;
end information type

information type observation_results
 sorts INFO_ELEMENT,
 SIGN
 relations observation_result: INFO_ELEMENT * SIGN ;
end information type

information type assumptions_hypotheses_and_such
 sorts INFO_ELEMENT, SIGN
 relations assumed: INFO_ELEMENT * SIGN ;
 rejected: INFO_ELEMENT * SIGN ;
 has_been_considered: INFO_ELEMENT * SIGN ;
 possible_assumption: INFO_ELEMENT * SIGN ;
 predicted: INFO_ELEMENT * SIGN ;
 predicted_for: INFO_ELEMENT * SIGN * INFO_ELEMENT * SIGN ;
 known_to_hold: INFO_ELEMENT * SIGN ;
end information type

information type causes
...
end information type

information type symptoms
...
end information type

information type world_info
 information types symptoms, causes;
end information type

information type world_meta_info
 sorts WORLD_INFO_ELEMENT,

INFO_ELEMENT
meta-descriptions world_info : WORLD_INFO_ELEMENT;
sub sorts WORLD_INFO_ELEMENT: INFO_ELEMENT;
end information type

information type domain_meta_info
 information types world_meta_info;
end information type

information type observation_info
 information types obs_to_be_performed, domain_meta_info;
end information type

information type observation_result_info
 information types observation_results, domain_meta_info, truth_indication;
end information type

information type assumption_info

 information types domain_meta_info, truth_indication, assumptions_hypotheses_and_such;
end information type

component assumption_determination

input information types assumption_info, observation_result_info;
output information type assumption_info;

initial kernel information level_2

assumption(has_been_considered(HYP: INFO_ELEMENT, S: SIGN), neg);

knowledge base assumption_determination_local_kbs
 information types assumption_info, observation_result_info;
contents

/* use as many rules as you like, you may also create additional information
types if you like. */

...

end knowledge base

component assumption_evaluation
input information types observation_result_info, assumption_info;
output information type observation_info, assumption_info;

knowledge base assumption_evaluation_local_kbs
 information types observation_result_info, assumption_info, observation_info;

contents
if predicted_for(OBS: INFO_ELEMENT, S1: SIGN, HYP: INFO_ELEMENT, S2: SIGN)
then to_be_observed(OBS: INFO_ELEMENT);

if assumed(HYP: INFO_ELEMENT, S: SIGN)
 and predicted_for(OBS: INFO_ELEMENT, pos, HYP: INFO_ELEMENT, S: SIGN)
 and observation_result(OBS: INFO_ELEMENT, neg)
then rejected(HYP: INFO_ELEMENT, S: SIGN)
 and has_been_considered(HYP: INFO_ELEMENT, S: SIGN);

if assumed(HYP: INFO_ELEMENT, S: SIGN)
 and predicted_for(OBS: INFO_ELEMENT, neg, HYP: INFO_ELEMENT, S: SIGN)
 and observation_result(OBS: INFO_ELEMENT, pos)
then rejected(HYP: INFO_ELEMENT, S: SIGN)
 and has_been_considered(HYP: INFO_ELEMENT, S: SIGN);

end knowledge base

component observation_result_prediction

input information types assumption_info;
output information type assumption_info;

knowledge base observation_result_prediction_local_kbs
 information types assumption_info;

contents

/* use as many rules as you like */

end knowledge base

component Owner

task control foci observations;

input information type target_observation_result_info; /* standard type */
output information type symptoms;

alternative specification user

information links
private link hypotheses : object - object
domain assumption_determination

information type assumption_info;
co-domain assumption_evaluation

information type assumption_info;

sort links identity
object links identity
term links identity
atom links

(possible_assumption(HYP: INFO_ELEMENT, S: SIGN),
 assumed(HYP: INFO_ELEMENT, S: SIGN)):
 <<true,true>, <false,false>,<unknown, unknown>>;

end link

private link assessments : object - object
domain assumption_evaluation

information type assumption_info;
co-domain assumption_determination

information type assumption_info;

sort links identity
object links identity
term links identity
atom links

(rejected(HYP: INFO_ELEMENT, S: SIGN),
 rejected(HYP: INFO_ELEMENT, S: SIGN)):
 <<true, true>, <false, false>>;

(has_been_considered(HYP: INFO_ELEMENT, S: SIGN),
 has_been_considered(HYP: INFO_ELEMENT, S: SIGN)):
 <<true, true>, <false, false>>;

end link

private link required_observations : object - target
domain assumption_evaluation

information type observation_info;
co-domain external_world

information type target_observation_result_info; /* standard type */

sort links (WORLD_INFO_ELEMENT, OA)
object links identity
term links identity
atom links

(to_be_observed(OBS: WORLD_INFO_ELEMENT),
 target(observations, OBS: OA, determine)) :
 <<true, true>, <unknown, false>, <false,false>>;

end link

private link observation_results : epistemic - object

domain external_world
information type epistemic_world_info; /* standard meta-level */

co-domain assumption_evaluation
information type observation_result_info; /* object level */

sort links (OA, WORLD_INFO_ELEMENT)
object links identity
term links identity
atom links
 (true(OBS: OA), observation_result(OBS: WORLD_INFO_ELEMENT, pos)) :
 <<true, true>,<false,false>>;
 (false(OBS: OA), observation_result(OBS: WORLD_INFO_ELEMENT, neg)) :
 <<true, true>,<false,false>>;
end link

private link assumptions : object - object
domain assumption_determination

information type assumption_info;
co-domain observation_result_prediction

 information type assumption_info;

sort links identity
object links identity
term links identity
atom links

(possible_assumption(HYP: INFO_ELEMENT, S: SIGN),
 assumed(HYP: INFO_ELEMENT, S: SIGN)) :
 <<true, true>, <unknown, false>, <false,false>>;

end link

private link predictions : object - object
domain observation_result_prediction

information type assumption_info;
co-domain assumption_evaluation

information type assumption_info;

sort links identity
object links identity
term links identity
atom links

(predicted_for(OBS: INFO_ELEMENT, S1: SIGN, HYP: INFO_ELEMENT, S2: SIGN),
predicted_for(OBS: INFO_ELEMENT, S1: SIGN, HYP: INFO_ELEMENT, S2: SIGN))

:
 <<true, true>, <unknown, unknown>, <false,false>>;

end link

Answer sheet Student: Year :

Input (1) [assumed(a, pos), predicted_for(b, pos, a, pos)]

Output after revision but

before reasoning

Output after reasoning

Input (2) [assumed(a, pos),

 predicted_for(b, pos, a, pos),

 observation_result(b, neg)]

Output after revision but

before reasoning

Output after reasoning

Input (3) [assumed(a, neg),

 predicted_for(b, neg, a, neg),

 observation_result(b, neg)]

Output after revision but

before reasoning

Output after reasoning

Table 1

