
 1

Faculteit der Exacte Wetenschappen Tentamen Ontwerp van Multi-agentsystemen

Vrije Universiteit Amsterdam 21 januari 2000

Opgave 1 2 3 4 5 bonus

Punten 20 15 20 20 15 10

Normering:
Het tentamencij fer T is gelijk aan (het totaal behaalde punten voor de tentamenopgaven plus 10
punten bonus) gedeeld door 10.

Het eindcij fer voor het hoorcollege Ontwerp van Multi-agentsystemen wordt als volgt berekend:

Eindcij fer = (T + H + P) / 3,

waarbij
T = tentamencijfer,
H = cijfer huiswerkopgaven,
P = cijfer voor 1 punts practisch werk.

Verzoek:
U wordt vriendelijk verzocht om voor Uw antwoorden gebruik te maken van de speciale
antwoordvellen.

U treft aan:
5 opgaven
appendices
antwoordvellen

Opgave 1 (20 punten)

Read Appendix 1 and answer the following questions. The generic agent model of Chapter 6

consists of 7 components: own process control, world interaction management, agent interaction management,

 2

maintenance of world information, maintenance of agent information, cooperation management, and agent specific

task.

Which of these components do you need and which do you not need to model Columbus?

Motivate your answer and make explicit references to the text of Appendix 1.

Opgave 2 (15 punten)

The knowledge Columbus needs to determine his goals needs to be specified in one of the generic

components. Let us call this component comp_c so as not to influence your answer to question 1.

In Appendix 2 a partial specification is given of comp_c. Complete the knowledge base of the sub-

component goal_determination of comp_c (10 points). Make sure that for every possible character of

Columbus the knowledge base can be used to determine when to explore, and when to go back to

resupply Columbus. The cautious explorer reckons that with the tanks half full he should be able

to make it back to the last place where he resupplied. Explain every rule you add to the

knowledge base in normal words (5 points).

Opgave 3 (20 punten)

Assume that at a certain moment in time the object level output information state of component

goal_determination is S.

S = [current_goal(back_to_resupply), next_goal(explore), not current_goal(explore)].

Consider the three meta-information states M1, M2, and M3 of Appendix 3.

a) For each of the following pairs of information states denote whether or not they are level

coherent: pair (S, M1), pair (S, M2), pair (S, M3).

b) For every pair that is not coherent, explain why that is so.

Opgave 4 (20 punten)

Suppose that before execution of the links reset_old_goals, and set_new_goals the input and output

information states of component goal_determination are as given in table 1. First link reset_old_goals

is executed, after that also link set_new_goals is executed. The specification of these links can be

found in Appendix 2. Focus only on the atoms that can be represented using the information type

goal_info.

 3

a) Give the input meta-level information state of component goal_determination after execution of

the link reset_old_goals.

b) Give the input object level information state of component goal_determination after execution of

the link reset_old_goals (and after execution of the downward reflection).

c) Give the input meta-level information state of component goal_determination after execution of

the link set_new_goals. Pay attention to the changes you made for 4a and 4b, remember that this

link is executed after these changes took effect.

d) Give the input object level information state of component goal_determination after execution of

the link set_new_goals (and after execution of the downward reflection). Pay attention to the

changes you made for 4a, 4b, and 4c remember that this link is executed after these changes

took effect.

object level input: meta-level input: object level output:

current_goal(explore):
false

assumption(current_goal(explore), pos): unknown next_goal(explore): true

current_goal(
 back_to_resupply):
true

assumption(current_goal(explore), neg): true current_goal(explore): false

 assumption(current_goal(back_to_resupply), pos): true current_goal(back_to_resupply): true

 assumption(current_goal(back_to_resupply), neg):
unknown

 assumption(next_goal(explore), pos): unknown

 assumption(next_goal(explore), neg): unknown

 assumption(next_goal(back_to_resupply), pos):
unknown

 assumption(next_goal(back_to_resupply), neg):
unknown

Table 1 information states with respect to information type goal_info

Opgave 5 (15 punten)

Consider the domain of laying a table for four persons for dinner, see Figure 2. The laying of the

table can be seen as a process that is to be controlled. In the design of a process controller for this

domain, the design of the process control model described in Chapter 3 is to be reused. The

domain specific information types have to be adapted.

 4

a) Design the information type domain info for this domain. You can do this in one information

type, but you are also allowed to make more levels of abstraction.

b) Design the information type domain actions for this domain. You can do this in one information

type, but you are also allowed to make more levels of abstraction.

Figure 2

 5

Appendix 1 Columbus: explor ing space!

Only some 600 years ago the people that sailed the seven seas were often conftronted with the

unknown. Large areas of Earth were still unmapped and maps that were available were often

incomplete and not very accurate. Explorers were often considered heroes (only if they returned

to tell their stories) or fools (those that did not come back). Experience learned that the major

problem (next to plain disasters like shipwrecks) is that if you do some serious exploring then you

tend to run out of supplies. With the start of the new millenium, your help is requested in

designing the next generation of explorers.

 In this new millenium a serious start will be made to explore space. Instead of sending

people onto these very dangerous travels, the unmanned spacecraft will play a central role in this

endeavour. The idea is to send out a mass of small spacecrafts that have the ability to observe

their environment and are capable of resupplying themselves if they are able to find supplies in

space. The first prototype called Columbus is almost ready; Columbus has everything it needs but

for a reasoning component. That component will be responsible for Columbus' behaviour, it

needs to be modelled according to the following requirements.

 Columbus needs to be an agent (according to the weak notion of agenthood), for it will

have to be totally self dependent (Earth will soon be too far away to be able to influence its

behaviour). The main reason to send out Columbus is the need for space maps that contain lots of

information about the planets, stars, asteroids, blackholes, and others the Columbus encounters

during its travels. However, these travels take energy for the sensors and fuel for the engines that

Columbus needs to steer itself and to get away from gravitation fields. Of course Columbus only

gets a limited amount of supplies when it sets of on its voyage, further on more information on

this point can be found.

 The voyage Columbus is making is only useful to Earth if, every now and then, Columbus

communicates to Earth a report containing the star map it has made so far. Earth is unable to

reply to these messages. The map contains all information that Columbus picked up on its

scanners and sensors and Columbus adds the space coordinates for that information (time stamp,

current location, speed, direction, etc.). Columbus also has special sensors with which it can

monitor its own state of supplies: almost empty, half full, almost full, full.

 In the exploration of space the major problem that Columbus has to face is that it could

run out of supplies. Hopefully, Columbus will discover new places to resupply itself during its

explorations. The ship's sensors are fully capable of recognizing different materials that can be

 6

used as supplies. Of course Columbus needs to remember where these supplies are, and since it

has to make a space map anyway, the information of where supplies can be found has to be added

to the space map. While exploring space the supplies will slowly run out and there will be a point

where Columbus has to decide whether to turn back to one of the places it knows it can resupply

or whether to press on in the hope that a new supply will be discovered before the current supply

runs out. So the question always is: does it continue to travel into the unknown (explore), or does

it go back to a place where it knows it can resupply (back to resupply)? This decision process is not

only based on Columbus's beliefs about its environment and its own status, but also on its own

character, since Columbus can eiter be reckless, cautious, or a coward.

 Important is that Columbus always has a goal!

 You can assume, that initially, Columbus, has the goal to explore and not to go back to

resupply, and it has one of the above mentioned characters. You can further assume that Columbus

will resupply at every opportunity unless its tanks are full.

 7

Appendix 2 A par t of the specification for Columbus

2.1 top-level

information type agent_characteristics

 sorts CHARACTERISTIC;

 relations own_characteristic: CHARACTERISTIC;

end information type

information type domain_agent_characteristics

 sorts CHARACTERISTIC;

 objects reckless, cautious, coward: CHARACTERISTIC;

end information type

information type agent_characteristics_info

 information types agent_characteristics, domain_agent_characteristics;

end information type

information type goal_info

 sorts GOAL

 objects explore, back_to_resupply: GOAL;

 relations current_goal, next_goal: GOAL;

end information type

2.2 component comp_c

 8

goal determination

comp c

reset old goals

set new goals

available info goals

Figure 3 A partial view on comp_c

task control knowledge base of comp_c

 if start

 then next_component_state(goal_determination, awake)

 and next_link_state(available_info, awake);

 if evaluation(goal_determination, next_goal_determined, any, succeeded)

 and not component_state(goal_determination, busy)

 and previous_component_state(goal_determination, busy)

 then next_link_sequence_state([goals, reset_old_goals, set_new_goals], uptodate);

end task control kb

private link reset_old_goals: epistemic - assumption

 domain goal_determination

 level GD_meta_level

 information types epistemic_goal_info

 /* the standard epistemic information type with respect to information type goal_info */

 co-domain goal_determination

 level GD_meta_level

 information types assumption_goal_info

 /* the standard assumption information type with respect to information type goal_info */

 sort links identity

 term links identity

 9

 atom links (true(current_goal(G: GOAL)), assumption(current_goal(G: GOAL), neg)): <<true, true>>;

end link

private link set_new_goals: epistemic - assumption

 domain goal_determination

 level GD_meta_level

 information types epistemic_goal_info

 /* the standard epistemic information type with respect to information type goal_info */

 co-domain goal_determination

 level GD_meta_level

 information types assumption_goal_info

 /* the standard assumption information type with respect to information type goal_info */

sort links identity

term links identity

atom links (true(next_goal(G: GOAL)), assumption(current_goal(G: GOAL), pos)): <<true, true>>;

end link

 10

mediating link available_info: object - object

 domain comp_c

 level comp_c_object_level

 information types agent_characteristics_info, belief_info

 co-domain goal_determination

 level GD_object_level

 information types agent_characteristics_info, belief_info

sort links identity

term links identity

atom links identity

end link

mediating link goals: object - object

 domain goal_determination

 level GD_object_level

 information types goal_info

 co-domain comp_c

 level comp_c_object_level

 information types goal_info

sort links identity

term links identity

atom links

(next_goal(G: GOAL), current_goal(G: GOAL)): <<true,true>, <unknown,unknown>, <false, false>>;

end link

component goal_determination
input information types agent_characteristics_info, belief_info, goal_info;

output information types goal_info;

task information evaluation criterion: next_goal_determined

initial task information: target(next_goal_determined, next_goal(G: GOAL), confirm);

knowledge base goal_determination_kb

 information types agent_characteristics_info, belief_info, goal_info;

 contents

 if own_characteristic(reckless)

 and belief(suppy_status(almost_empty), neg)

 then next_goal(explore);

 if own_characteristic(cautious)

 /* you can use more rules if you want or need to */

 11

 then next_goal(explore);

 if own_characteristic(coward)

 and belief(suppy_status(almost_full), pos)

 then next_goal(explore);

 if own_characteristic(coward)

 and belief(suppy_status(full), pos)

 then next_goal(explore);

 if own_characteristic(reckless)

 and belief(suppy_status(almost_empty), pos)

 then next_goal(back_to_resupply);

 if own_characteristic(cautious)

 /* you can use more rules if you want or need to */

 then next_goal(back_to_resupply);

 if own_characteristic(coward)

 and belief(suppy_status(half_full), pos)

 then next_goal(back_to_resupply);

 if own_characteristic(coward)

 and belief(suppy_status(almost_empty), pos)

 then next_goal(back_to_resupply);

end knowledge base

contents goal_determination_kb;

end component

 12

Appendix 3
The three information states for question 3.

M1 = [

known(current_goal(explore)), not true(current_goal(explore)), false(current_goal(explore)),

known(current_goal(
 back_to_resupply)),

true(current_goal(
 back_to_resupply)),

not false(current_goal(
 back_to_resupply)),

known(next_goal(explore)), true(next_goal(explore)), not false(next_goal(explore)),

not known(next_goal(
 back_to_resupply)),

not true(next_goal(
 back_to_resupply)),

not false(next_goal(
 back_to_resupply))

]

M2 = [

known(current_goal(explore)), not true(current_goal(explore)), false(current_goal(explore)),

known(current_goal(
 back_to_resupply)),

true(current_goal(
 back_to_resupply)),

not false(current_goal(
 back_to_resupply)),

known(next_goal(explore)), true(next_goal(explore)), not false(next_goal(explore)),

known(next_goal(
 back_to_resupply)),

not true(next_goal(
 back_to_resupply)),

false(next_goal(
 back_to_resupply))

]

M3 = [

not known(current_goal(explore)), not true(current_goal(explore)), false(current_goal(explore)),

not known(current_goal(
 back_to_resupply)),

true(current_goal(
 back_to_resupply)),

not false(current_goal(
 back_to_resupply)),

not known(next_goal(explore)), true(next_goal(explore)), not false(next_goal(explore)),

known(next_goal(
 back_to_resupply))

]

 13

Antwoordvellen Student: L ichting:
Antwoorden op de vragen 4a en 4b

meta level input

after execution of reset_old_goals

before downward reflection

object level input

after execution of reset_old_goals and

after downward reflection

atom truth-

value

atom truth-

value

assumption(current_goal(explore), pos)

assumption(current_goal(explore), neg)

assumption(current_goal(back_to_resupply), pos)

assumption(current_goal(back_to_resupply), neg)

assumption(next_goal(explore), pos)

assumption(next_goal(explore), neg)

assumption(next_goal(back_to_resupply), pos)

assumption(next_goal(back_to_resupply), neg)

Tabel 4

 14

Answersheets Student: Year :
Answers to questions 4c and 4d
(think of what you entered in Table 4!)

meta level input

after execution of set_new_goals and

before downward reflection

object level input

after execution of set_new_goals and

after downward reflection

atom truth-

value

atom truth-

value

assumption(current_goal(explore), pos)

assumption(current_goal(explore), neg)

assumption(current_goal(back_to_resupply), pos)

assumption(current_goal(back_to_resupply), neg)

assumption(next_goal(explore), pos)

assumption(next_goal(explore), neg)

assumption(next_goal(back_to_resupply), pos)

assumption(next_goal(back_to_resupply), neg)

Table 5

