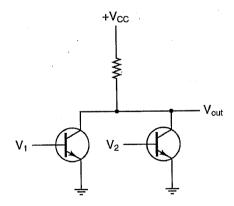
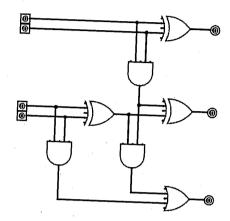
Computer Systems Exam

May 26th, 2011

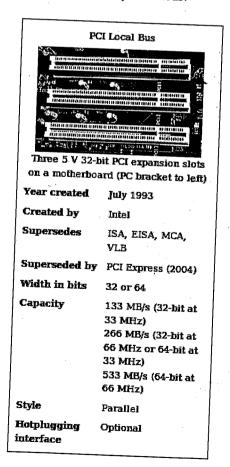
English version

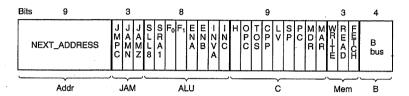

This is a closed book exam: no documentation is allowed. Please make sure that your handwriting is readable!

Note: a Dutch version of this exam is also available, starting from page 5.


Q1. Encode this word using a Hamming code.

1101 1101 1101


- Q2. Explain what is the memory wall, and what can be done about it.
- Q3. How does Flash memory keep its value after the circuit is powered off?
- Q4. Which digital gate is implemented by the following electronic circuit? Explain briefly how it works.


Q5. What does the following digital circuit do?

- Q6. Explain what is a Program Counter. Which layer of the computer architecture is in charge of updating it?
- Q7. Explain the difference between a synchronous and an asynchronous bus.
- Q8. Take a look at the following description of the PCI bus (copy-pasted from Wikipedia). Is PCI synchronous or asynchronous?

- Q9. In the Mic1 microcode, it is impossible for two different micro-instructions A and B to have conditional branches to the same micro-instruction C. Explain why.
- Q10. Micro-instructions in the Mic1 architecture are represented using 29 bits, as shown below.

The Mic2 architecture extends Mic1 with a second input bus, an instruction fetch unit and an additional MBR2 register, but no pipelining. How many bits are necessary for a micro-instruction in the Mic2 architecture? Explain which bit(s) must be added or removed compared to Mic1.

- Q11. What are the two types of locality properties? Explain how computer architectures exploit both types of locality to improve performance.
- Q12. Give one example of an ISA instruction which should be available only when the CPU is running in privilege level 0.
- Q13. Assume that a program's memory is as follows:

```
Variable A stored at address 120 contains value 150.
Variable B stored at address 130 contains value 140.
Variable C stored at address 140 contains value 130.
Variable D stored at address 150 contains value 120.
```

What will be the output of the following assembly instruction:

ADD #150,(D)

- Q14. A user program issues the following operations:
 - Read the content of a variable in memory; this variable contains a file name
 - Open the file
 - Read the first 1024 bytes of the file
 - · Check how many newlines are present in the content that has been read
 - Display on screen: "The first 1024 bytes of this file contains X newlines" (where X is replaced with the right number)
 - Close the file

How many system calls did the program issue? Give the full list.

Q15. Explain what is a race condition. What can be done about it?

- Q16. A hard-disk has 300 tracks (numbered from 0 to 299). The disk is not being accessed at the moment. The arm is currently over track 59. Suddently, the disk driver receives a burst of requests for five blocks respectively located in tracks 12, 55, 70, 200 and 254.
 - (a) In which orders will blocks be read if the driver implements the Shortest-Seek-Time-First policy?
 - (b) In which orders will blocks be read if the driver implements the Scan policy?
- Q17. A computer has 1 GB of physical memory. It runs a process which uses 1.5 GB of memory. Explain what happens when the program tries to access a variable which is currently not located in RAM:
 - (a) What does the operating system do?
 - (b) What does the MMU do?
- Q18. In FAT-based file systems, each directory contains the meta-data of the files it contains (e.g., size, owner, date of the last update). Would it be a good idea to store this meta-data in a separate block per file, as inode-based file systems do?
- Q19. A RAID-5 array contains 6 disks of 2 TB each. How much content can we store in it?
- Q20. Why do libraries need to contain a symbol table? What does this table contain exactly?

— the end —