Department of Computer Science Vrije Universiteit

Computer Networks 03.06.2005

5pt

5pt

5pt

5pt

5pt

10pt

5pt

5pt

5pt

Always explain your answers concisely and be sure to be to-the-point.

Part I

This part covers the same material as the midterm exam.

- 1a Why does the 802.3 (Ethernet) description also specify what the maximum segment length is?

 5pt
- 1b Gigabit Ethernet allows for carrier extension and frame bursting. What do these techniques establish and why are they necessary?
- 1c For a switched Gigabit Ethernet connection, there is no maximum segment length specified. Why not?
- 2a If τ is the propagation speed of a signal, and ρ the transmission rate, how many bits can a wire of length L contain?
- 2b Consider a token ring network without any artificial delays, operating at a transmission rate ρ . Each computer in the ring introduces a delay of δ seconds. With a propagation speed over the wire of τ , and a token length of R bits, what is the minimum ring length?
- 3a What is the necessary and sufficient condition for constructing a k-bit error detecting code?
- 3b Consider the following 2-dimensional parity code (see the example below). A string of $b_1b_2...b_n$ of n bits is split into k parts of l bits, i.e., $n=k\cdot l$. The string is then represented in a $k\times l$ matrix, where the i-th row contains bits $b_{l(i-1)+1}...b_{li}$, and the j-th column contains bits $b_jb_{j+l}...b_{j+(k-1)l}$. The i-th row is extended with a 1 if that row contains an odd number of bits, and with a 0 otherwise. Likewise, the j-th column is extended with 1 or 0, respectively. Show by example that this a 1-bit error-correcting code.

4 Limited-contention protocols dynamically adapt to traffic intensity. What problem do they solve by such an adaptation?

Part II

- 5a Explain the difference between integrated and differentiated services as provided by the Internet IP layer.
- 5b Explain how fair queuing works in routers and which problem it solves. 5pt
- 5c Multi-Protocol Label Switching (MPLS) is popular for multimedia streaming in wide-area networks. Why?
- 6a What does the 3-way handshake in TCP establish?

- 6b When a client sets up a TCP connection, it may request a buffer size at the server that is larger than its congestion window size. Does this make sense?
- 6c Explain what is meant by the silly window syndrome.

5pt 5pt

7 Below is the ouput of querying a DNS server for MX records for the vu.nl domain. What does it tell us?

5pt

```
seuss % dig MX vu.nl
```

```
; <<>> DiG 9.2.5 <<>> MX vu.nl
;; global options: printcmd
```

- ;; Got answer:
- ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 59633
- ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 3, ADDITIONAL: 7

	IN	MX	
60	IN	MX	20 mail2.vu.nl.
60	IN	MX	10 mail.vu.nl.
86400 86400 86400	IN IN IN	ns ns ns	ns1.surfnet.nl. star.cs.vu.nl. ns.vu.nl.
86400 86400 86400 168 168 86400	IN IN IN IN IN	A A A A AAAA A	130.37.129.161 130.37.129.165 130.37.129.4 192.87.106.101 2001:610:1:800a:192:87:106:101 130.37.24.6 192.31.231.42
	86400 86400 86400 86400 86400 168 168	60 IN 60 IN 86400 IN 86400 IN 86400 IN 86400 IN 86400 IN 168 IN 168 IN 86400 IN	60 IN MX 60 IN MX 86400 IN NS 86400 IN NS 86400 IN NS 86400 IN A 86400 IN A 168 IN A 168 IN AAAA 86400 IN A

- ;; Query time: 322 msec
- ;; SERVER: 130.37.20.3#53(130.37.20.3)
- ;; WHEN: Fri May 27 11:43:48 2005
- ;; MSG SIZE rcvd: 255

8a Show that the following protocol is subject to a reflection attack.

5pt

8b Explain how you can digitally sign and send a message m that is allowed to be sent as plaintext.

5pt

Final grade: (1) Add, per part, the total points. (2) Let T denote the total points for the midterm exam $(0 \le T \le 45)$; D1 the total points for part I; D2 the total points for part II. The final number of points E is equal to $\max\{T,D1\} + D2 + 10$.