Dept. Math. & Comp. Sc. Vrije Universiteit

Computer Networks 06.01.1999

Part I

This part covers the same material as the midterm exam.

1a	Explain under which conditions it is better to follow a CSMA protocol instead of a collision-free protocol.	5pt
1b	A pure ALOHA protocol will, at best, give a channel utilization of 18%. What does this actually mean?	5pt
1c	Why is it not appropriate to apply CSMA for wireless communication?	10pt
2a	Explain the <i>count-to-infinity</i> problem, and a widely deployed (not entirely complete) solution.	10pt
2b	What is the difference between a leaky bucket and a token bucket?	5pt
2c	Explain the difference between <i>circuit switching</i> and <i>packet switching</i> , and the difference between <i>connectionless service</i> and <i>connection-oriented service</i> . Give an example for each (<i>switching, service</i>) combination.	10pt
Part	II	
3a	Devise an algorithm for ending a connection, such that both parties agree on disconnecting. Assume that no messages are lost, but message ordering is not guaranteed.	5pt
<i>3b</i>	Disconnecting should preferably be done only when both parties agree. However, guaranteeing that agreement can be reached is impossible when messages can be lost. Explain why.	10pt
<i>3c</i>	Transport protocols generally use a buffer credit grant mechanism. Why?	5pt
4a	If Alice wants to send a secret (legally binding) offer to Bob over a network, what should she do? Explain why your solution works.	5pt
4b	Explain how the Diffie-Hellman shared key exchange algorithm works, and why this algorithm was invented.	10pt
5	Explain what happens when a Web browser has to display the data referenced by URL ftp://ftp.cs.vu.nl/pub/steen/file.ps	10pt

Final grade: (1) Add, per part, the total points. (2) Let T denote the total points for the midterm exam $(0 \le T \le 45)$; D1 the total points for part I; D2 the total points for part I. The final number of points E is equal to $\max\{T,D1\} + D2 + 10$.

BIJLAGE BIJ TOETS COMPUTERNETWERKEN 22.10.1999

```
01 void protocol4 (void) {
02
     seq_nr next_frame_to_send, frame_expected;
03
    frame r, s;
04
    packet buffer;
05
    event_type event;
06
07
    next_frame_to_send = 0; frame_expected = 0;
80
   from_network_layer(&buffer);
09
   s.info = buffer;
10
    s.seq = next_frame_to_send;
11
    s.ack = 1 - frame_expected;
    to_physical_layer(&s); start_timer(s.seq);
12
13
14
    while (true) {
      wait_for_event(&event);
15
16
      if (event == frame_arrival) {
         from_physical_layer(&r);
17
18
         if (r.seq == frame_expected){
19
            to_network_layer(&r.info);
20
            inc(frame _expected);
21
         }
22
         if (r.ack == next_frame_to_send){
23
            from_network_layer(&buffer);
24
            inc(next_frame_to_send);
25
         }
       }
26
27
       s.info = buffer;
28
       s.seq = next_frame_to_send;
29
      s.ack = 1 - frame_expected;
30
      to_physical_layer(&s); start_timer(s.seq);
31
    }
32 }
```