' Dept. Math. & Comp. Sc. Computer Networks
| Vrije Universiteit 06.01.1999

Part I
This part covers the same material as the midterm exam.

la Explain under which conditions it is better to follow a CSMA protocol instead of a collision-free

protocol. Spt
1b A pure ALOHA protocol will, at best, give a channel utilization of 18%. What does this actually

mean? Spt
Ilc Why is it not appropriate to apply CSMA for wireless communication? 10pt

2a Explain the count-to-infinity problem, and a widely deployed (not entirely complete) solution. /0pt
2b What is the difference between a leaky bucket and a token bucket? Spt

2¢ Explain the difference between circuit switching and packet switching, and the difference be-
tween connectionless service and connection-oriented service. Give an example for each (switch-

ing,service) combination. 10pt
Part 11
3a Devise an algorithm for ending a connection, such that both parties agree on disconnecting,.
Assume that no messages are lost, but message ordering is not guarantced. Spt
3b Disconnecting should preferably be done only when both parties agree. However, guaranteeing
that agreement can be reached is impossible when messages can be lost. Explain why. 10pt
3c Transport protocols generally use a buffer credit grant mechanism. Why? Spt

4a If Alice wants to send a secret (legally binding) offer to Bob over a network, what should she
do? Explain why your solution works. Spt

4b Explain how the Diffie-Hellman shared key exchange algorithm works, and why this algorithm
was invented. 10pt

5 Explain what happens when a Web browser has to display the data referenced by URL
ftp://ftp.cs.vu.nl/pub/steen/file.ps 10pt

Final grade: (1) Add, per part, the total points. (2) Let T denote the total points for the midterm
exam (0 < T < 45); D1 the total points for part I; D2 the total points for part II. The final number
of points E is equal to max{T,D1} + D2+ 10.

BIJLAGE B1J TOETS COMPUTERNETWERKEN 22.10.1999

01 void protocol4 (void) {

02
03
04
05
06
o7
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 }

seq_nr next_frame_to_send, frame_expected;
frame r, s;

packet buffer;

event_type event;

next_frame_to_send = 0; frame_expected = 0;
from_network_layer(&buffer);

s.info = buffer;

s.seq next_frame_to_send;

s.ack = 1 - frame_expected;
to_physical_layer(&s); start_timer(s.seq);

while (true) {
wait_for_event (&event) ;

if (event == frame_arrival) {
from_physical_layer(&r);
if (r.seq == frame_expected){

to_network_layer(&r.info);
inc(frame _expected);

}

if (r.ack == next_frame_to_send){
from_network_layer (&¥buffer);
inc(next_frame_to_send);

}

.info = buffer;

.seq = next_frame_to_send;

.ack = 1 - frame_expected;
to_physical_layer(&s); start_timer(s.seq);

0w un n Y

