Department of Computer Science Exam Computer \ \
1 ["
A
Vrije Universiteit 21-06-2004 \¥ | |
~=

This is a “closed book’ exam.
No printed materials or electronic devices are admitted for use during the exam.
You are supposed to answer the questions in English.

Wishing you lots of success with the exam!

Points per question (Normering)
Q1 2 3 4 5 6|7 8
a bla b cja b|la b|la b a b cla b
P/ 3 3|4 4 419 10{4 4|3 711413 3 3|6 6
Total: 90 (+10 bonus) = 100
1. Color

a) Explain how different colors are composed in the RGB model! Why can the RGB model
create colors that are useful for the human observer?

b) Explain how the CMY color model differs from RGB! What is the main application area for
the CMY model?

2. Input Devices

a) What are the measure and trigger of an input device? What are the measure and trigger of a
mouse? How can this information be derived from the physical mouse device?

b) Explain the different input modes: request mode, sample mode, event mode! Give examples
for each mode! Which input mode is implemented in OpenGL’s callback functions? And
what is the advantage of doing so?

c) Write a callback function in the C language using OpenGL (the GLUT library) that allows
a user to select a range in the active window using the mouse! The user selects a range by
moving the mouse to one corner of the range, pressing the left mouse button, moving the
mouse (while keeping the button pressed) to the opposite corner of the range, and finally
releasing the mouse button. The screen coordinates have to be filled into the following
struct variable range (see below/next page). (It is not necessary that your callback function
visualizes the range while selecting.)

typedef struct ({
int x start, y start; /* first corner */
int x end, y end; /* opposite corner */
} range type;
range_type range;

3. Affine Transformations
In a 2D homogeneous coordinate system, each point P can be represented as P = Py + zv; + yvs

a) For this coordinate system, identify the matrices for the following transformations:

— T'(ts,t,), for a translation by the vector [t,,t,,0]T
- S(sz, 8y), for a scaling with the scalars s, and s, (and the fix point in the origin)

— R(f), for a rotation around the origin by an angle 8
Hints:

x’,y)

sin o B . x,9

] p sin(a +) =sina - cos f £ cosa - sin 8
cos a ™ * cos(a®B) =cosa-cosf Fsina-sinf

b) Let 13,75, 51, Ss, Ry, R be translations, scalings, and rotations, as defined by the matrices
from part a). Which of the following transformation pairs are commutative? Show why!

1) 17,71 ii) S, 5o i) Ry, Ry iv) Ty, 5, v) T1, Ry
4. Hidden Surface Removal

a) Explain briefly the painter’s algorithm! In which cases does the algorithm fail?

b) Explain briefly the z-buffer algorithm! Which issues does the application programmer have
to deal with that the algortihm cannot handle by itself?

5. Graphics Objects

a) Explain the notion and use of “instance transformation” for graphics objects!

b) Suppose, for an animation program you have a complex graphical object represented by the
following, recursive C data structure:

typedef struct position ({
/* relative to the parent node in the tree: */

GLfloat tx,ty,tz; /* translation * /
GLfloat sx,sy,sz; /* scaling */
GLfloat rx,ry,rz; /* rotation axis */
GLfloat angle; /* angle of rotation */

} position;

typedef struct node {

struct position *pl, *p2; /* key frames 1 and 2 */
void (*attrib function) (); /* setting attributes, */
/* if not NULL */
void (*drawing function) (); /* drawing the object */
struct node *sibling; /* list of sibling nodes */
struct node *child; /* list child nodes */

} node;

For animating a scene, the graphics object represented with this data structure can be dis-
played at various intermediate steps between two so-called key frames. Assume, you have a
C function

void interpolate(struct position *pl, struct position *p2,
struct position *p3, GLfloat percentage) ;

that computes in p3 the interpolation between pl and p2 for a position of percentage.
The valid range for percentage is 0..1, where O corresponds to p1 and 1 corresponds to

p2.

Implement a C function (based on OpenGL):

void display(struct node *tree, GLfloat percentage)

that displays the graphical object given in t ree! Your function shall produce a single image
of the object that corresponds to a frame that lies p % between p1 and p2. (Your function has
to traverse all nodes of the tree data structure.) The function attrib_function allows
to set atributes like color or material properties; it shall only be called if the pointer is not
NULL.

6. Transformations

Screen

The image above (previous page) shows the transformations from objects to the screen. Explain
the the diagram, focusing on the following terms:

1. clip coordinates 8. object coordinates
2. clipping 9. parallelepiped

3. distortion 10. perspective division
4. eye coordinates 11. projection

5. frustum 12. screen coordinates
6. model-view matrix 13. viewport

7. NDC coordinates 14. view volume

7. Polygon Shading

a) Explain the basic idea of the Phong reflection model! Draw a simple figure that shows the
vectors involved in computing the shade of a given point on the surface of an object!

b) Explain how flat shading works, for example for a polygonal mesh! What are the advantage
and the disadvantage of flat shading?

¢) Explain Phong shading and how it improves over the disadvantage of flat shading!
8. Polygon Filling

a) Show how you can use the XOR operation to implement the odd-even polygon fill algorithm!
Assume the simple case in which 0 is the background color and 1 is the edge and fill color.
Which writing mode/operation do you use to modify the image?

(Hint: The edges are already drawn before the polygon will be filled.)

b) Implement the flood fill algorithm as a C function
void flood fill(int x, int y, color_.t color);
You can read the color of a pixel using color_t readpixel (int x, int y);
and you can write a pixel usingvoid write pixel (int x, int y, color.t color) ;
Your function flood_£i11 () can assume that the polygon has been drawn as pixels of color
color and that the pixel (z,y) lies inside the polygon.

