AN

Department of Computer Science Exam Compuﬁa’i:imﬂraphu@)
{
¥y 5.5
Vrije Universiteit 21201 — 2003+ i\,; Lo ,f’

Language disclaimer:

You are kindly asked to answer the questions using the English language. However, if it helps
clarifying your answers, you may also use some Dutch here and there. Doing so, will not affect
your result.

Allowed material:

This is an “open book” exam. For answering the questions, you are allowed to use all kinds of
written material like textbooks, printouts of the lecture slides, your own notes, etc.

However, it is not allowed to use any electronic equipment or any means of communication.

Wishing you lots of success with the exam!

Points per question (Normering)
Q|1 2 3 4 5 6 7 8
a b ¢cla b ¢ d|{a bja b c{a b|ja bja bla b c
P|3 4 411 4 2 4|5 5{4 6 4|3 3|4 8|3 104 5 4
Total: 90 (+10 bonus) = 100

1. Aspect Ratio

a) Explain the terms viewport and aspect ratio! Give a formula that expresses the aspect ratio
for a given rectangle!

b) Assume, a video player application (written with OpenGL) has a window with the traditional
aspect ratio 4:3. This video player shall now display videos with the new aspect ratio 16:9.
This can be done either by distorting the image and using the entire window, or by keeping
the aspect ratio and not using parts of the window.

Draw a simple sketch that shows the window and the video image (maximal possible size
within the window), centered in the window, keeping the aspect ratio 16:9!

¢) The user of the video player program shall be able to select between the two viewing modes.
Write a keyboard callback function that selects using the full window (with distortion of the
image) when the key £ is pressed, and that selects showing the video with the original aspect
ratio and black bars at two sides when the key b is pressed! (Your keyboard callback shall
select a suitable viewport.)

The callback function can access the width of the window through the global variable w.

2. Bresenham’s Algorithm

Mr. Bresenham also developed an algorithm for drawing circles. It works similar to his famous
line drawing algorithm. The following picture shows at its left side the second octant of a circle
with radius r and origin (0, 0). In this octant, the arc that is part of the circle can be drawn, starting
from the 12 o’clock position, by incrementing = and choosing the y coordinate closest to the circle.
(Points (x,) lie on the circle iff z2 + y* = r?)

t P= y
(xpvp)

For any point (z, y), we can use the decision variable d = 2% + y? — r2.

d = 0 if the point lies on the circle. d > 0 if the point lies outside, and d < 0 if the point lies inside
the circle.

a) Assume the last point that has been drawn is P = (z,, y,,) (see the picture above, on the right
side). The next point for drawing the circle is chosen from S and T". Give the formula for d
for the midpoint between S and T'!

b) Bresenham’s algorithm works incrementally. The decision variable d' shall be used for
choosing the next point, after one of S or T has been chosen. For both cases, give the
respective formula for d’, relative to d!

c) For starting at the 12 o’clock position, give the initial value for d! Also give an initialization
for an integer-valued decision variable d; that most closely approximates d!

d) Implement a C function void DrawArc (int Radius) that draws the octant of a circle
with the center at the origin (0, 0) that is shown in the above picture on the left side! Assume,
you have a function void setPixel (int x, int y) available. Your function shall
not use any floating point arithmetic.

3. Input Devices

a) What are the measure and trigger of an input device? What are the measure and trigger of a
mouse? How can this information be derived from the physical mouse device?

b) Explain the different input modes: request mode, sample mode, event mode! Give examples
for each mode! Which input mode is implemented in CpenGL’s callback functions? And
what is the advantage of doing so?

4. Morphing

Transformation of object shapes from one form to another is called morphing. For morphing,
object shapes are defined by so-called key frames between which several interpolative steps are
generated for a smooth morphing transition. Suppose, for an animation program you need to have
a complex graphical object represented by a recursive C data structure. The complex object shall
be represented by a child-sibling-tree; each node in this tree is placed into the scene relative to its
parent node by a translation, a scaling, and a rotation around a given axis.

a) Define two C data structures:

b)

)

— struct position, contains the necessary information to place a node into the
scene, relative to its parent node in the tree.

- struct node contains two position entries, one for the start position and one for
the end position of a morphing sequence. struct node also contains two function
pointers, one for drawing the object itself and one for setting attributes (like material
properties). Of course, struct node contains the necessary pointers for forming
the child-sibling-tree.

Assume, somebody implemented for you a C function

void interpolate (struct position *pl, struct position *p2,
struct position *p3, GLfloat percentage) ;

that computes in p3 the interpolation between p1 and p2 for a position of percentage.
The valid range for percentage is 0..1, where 0 corresponds to p1 and 1 corresponds to
p2.

Implement a C function (based on OpenGL):

void display (struct node *tree, GLfloat p)

that displays the graphical object given in t ree! Your function shall produce a single image
of the object that corresponds to a frame that lies p % between p1 and p2. (Your function
has to traverse all nodes of the tree data structure.)

For your display function from part b), explain how it works, especially why the order of
the individual operations correctly displays the complex object while traversing the tree!

5. Human Visual System

a)

b)

Explain the following properties of the human visual system as far as they are relevant for
the perception of images generated by computer graphics!

- human color perception

— CIE standard observer curve

— lateral inhibition

What can a computer-graphics application do to work around the properties of the human
visual system, namely standard observer curve and lateral inhibition?

6. Viewing

a) Explain (briefly) how the transformation from object (world) coordinates to eye (camera)
coordinates contributes to a viewing API! Explain the components of a u-v-n viewing coor-
dinate system, as shown in the figure:

n VUP

b) The function gluLookAt (eyex, eyey, eyez, 1ookx, looky, lookz, upx, upy, upz)
internally uses a u-v-n coordinate system:

o /ﬁ?
n = eye — look
u = upxn
vV = nxu -
‘,{'_*(// '.._Q>

fook

gluLookAt normalizes 7, u, v to unit length and uses the normalized vectors to build up
the viewing matrix:

Uy Uy Uy dg
Vp Uy Uy dy
Ng My Nz d
o 0 0 1
Show that u, v, n are mutually perpendicular (orthogonal)!

Show that the matrix V properly converts object coordinates to eye coordinates by demon-
strating that it maps eye to the origin (0, 0,0, 1), u to (1,0,0,0)7, v to (0,1,0,0)", and n
to (0,0, 1,0)7!

V= (de, dy, d,) = (—eye - u, —eye - v, —eye - n)

7. Affine Transformations
In a 2D homogeneous coordinate system, each point P can be represented as P = Py + zv; + yvo

a) For this coordinate system, identify the matrices for the following transformations:

— T (¢4, ty), for a translation by the vector [t;, t,,0]™*
- S(sz, 8y), for a scaling with the scalars s, and s, (and the fix point in the origin)
— R(#), for a rotation around the origin by an angle 8

b) Let 11, T3, S1, S2, R1, R, be translations, scalings, and rotations, as defined by the matrices
from part a). Which of the following transformation pairs are commutative? Show why!

1) Tl? T2
1:3 ;1’ % Hint: sin{a 4) =sina-cosf £+ cosa -sin g
) Lo cos(a+) = cosa - cos f Fsina - sin 3
IV) Tl7 Sl
v) T, R
8. Texture

Write a program that shows a road: The road is 20 meters long and 1 meter wide. Every 4 meters,
there is a white dash painted on the asphalt. Each dash is 150 cm long and 25 cm wide. The pattern
of the road shall be determined by an 8 x 8 texture pattern that is mapped onto a quad. Start with
the following main program. The desired output of your program is shown on the right side.

int main (int argc, char** argv)

{

glutInit (&argc, argv) ;
glutInitDisplayMode (GLUT_RGB | GLUT SINGLE) ;
glutInitWindowSize (500, 500);
glutCreateWindow (argv[0]);
glClearColor(0.0,0.0,0.7,1.0);
glMatrixMode (GL._PROJECTION) ;
glLoadIdentity () ;
gluOrtho2D(-13.0,13.0,-13.0,13.0) ;
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;

Init_Texture() ;

glutDisplayFunc (Display) ;
glutMainLoop () ;

return 0;

a) Define the data structure for your 8 x § texture and initialize it (assign data values)!

b) Implement the function void Init.Texture (void) that does all initialization neces-
sary for the texturing!

¢) Implement the function void Display (void) that actually displays the road!

