Divisie Wiskunde en Informatica Tentamen Computer Graphics

Vrije Universitei: 28 - 01 -2002

Language disclaimer:

You are kindly asked to answer the questions using the English language. However, if it helps
clarifying your answers, you may use some Dutch here and there. Doing so, will not affect your
result.

Allowed material:

This is an “open bock” exam. For answering the questions
written material like textbooks, printouts of the lecture slides;: yor
However, it is not allowed to use any electronic equipmen? ©

Wishing you lots of success with the exam!

Points per question (Normering)

Q1 2 3 4 5 6 7 8
a bla b c¢cla b ¢ dja b ¢ d eja bla bja b cla b ¢
PI3 3|3 5 414 5 5 4|1 4 1 1 4|4 64 8{2 3 314 5 4

Total: 90 (+10 bonus) = 100

1. Human Visual System

a) Explain the properties of the human visual system as far as they are relevant for the percep-
tion of images generated by computer graphics! Explain human color perception, the CIE
standard observer curve, and lateral inhibition!

b) What can a computer-graphics application do to work around the properties of the human
visual system, namely standard observer curve and lateral inhibition?

2. Viewports

a) Explain the terms viewport and aspect ratio! Give a formula that expresses the aspect ratio
for a given viewport!

b) Assume, an OpenGL application shall maintain the aspect ratio of its output a,, even when a
user resizes the window. In that case, the application shall use the maximal possible viewport
that maintains a, and that still fits into the reshaped window with its aspect ratio a,,. The
viewport shall be centered in the window.

Given a, and a,, how many different cases have to be distinguished for finding such a
maximal viewport? For each case, draw a simple sketch that shows the window, the viewport,
and their respective width and height!

¢) Write a callback function in the C language using OpenGL (the GLUT library) that selects
the viewport according to part b! Which (GLUT) function has to be used to register this
callback?

3. Shear
The following pictures show (from left to right) a cube, and the same cube sheared along the X
axis, the Y axis, and the Z axis.

an be represented depending

g the Y axis (angle f),
1¢ above picture!

b) Determine the shear matrices H, (), H,(8), and H,(7), corresponding to part a!

¢) Implement a C function void glShearX (GLfloat alpha) that works like glTrans-
late or glRotate (affecting the currently active transformation matrix by multiplying H,(cv)
to it! You can assume that a function cot() is available.

d) Assume you have implemented the function giShearX, and also (analogously) glShearY and
glShearZ. Determine a shear matrix H (e, 3,) that combines the effects of Hy (o), Hy(5),
and H,(v)!

Is it possible to implement a function glShearXYZ (alpha,beta,gamma) by a com-
bination of calls to glShearX, glShearY, and glShearZ? Explain why!

4. Bresenham’s Algorithm

Mr. Bresenham also developed an algorithm for drawing circles. It works similar to his famous
line drawing algorithm. The following picture shows at its left side the second octant of a circle
with radius r and origin (0, 0). In this octant, the arc that is part of the circle can be drawn, starting
from the 12 o’clock position, by incrementing z and choosing the y coordinate closest to the circle.
(Points (z, %) lie on the circle iff 22 + y? = r?)

For any point (z, y), we can use the decision variable d = z? + 3% — r2.
d = 0 if the point lies on the circle. d > 0 if the point lies outside, and d < 0 if the point lies inside
the circle.

a)

b)

d)

e)

Assume the last point that has been drawn is P = (z,, y,) (see the picture above, on the right
side). The next point for drawing the circle is chosen from S and T'. Give the formula for d
for the midpoint between S and T'!

Bresenham’s algorithm works incrementally. The decision variable d' shall be used for
choosing the next point, after one of S or 7" has been chosen. For both cases, give the
respective formula for d’, relative to d!

For starting at the 12 o’clock position, give the initial value for d!

The algorithm works most efficiently, if only integer arithmetic can be used. Assume that all
z and y coordinates, and the radius r are given as integer parameters. Give an initialization
for an integer-valued decision variable d; that closely approximates d!

Implement a C function void DrawArc (int Radius) that draws the second octant of
a circle with the center at the origin (0, 0) (as shown in the above picture)! Assume, you
have a function void setPixel (int x, int vy) available. Your function shall not
use any floating point arithmetic.

5. Morphing
Transformation of object shapes from one form to another is called morphing. For morphing,
object shapes are defined by so-called key frames between which several interpolative steps are

generated for a smooth morphing transition. Suppose, you have a complex graphical object repre-
sented by the following, recursive C data structure.

typedef struct position {
/* relative to the parent node in the tree: */

GLfloat tx,ty,tz; /* translation * /
GLfloat sx,sy,sz; /* scaling */
GLfloat rx,ry,rz; /* rotation axis */
GLfloat angle; /* angle of rotation */

} position;

typedef struct node {

struct position *pl, *p2; /* key frames 1 and 2 */
void (*attrib function) (); /* setting attributes, * /
/* 1f not NULL */
veid (*drawing function) (); /* drawing the object * /
struct node *sibling; /* list of sibling nodes */
struct node *child; /* list child nodes */

} node;

a) Implement a C function:

void interpolate (struct position *pl, struct position *p2,
struct position *p3, GLfloat percentage) }

that computes in p3 the interpolation between pl and p2 for a position of percentage!
The valid range for percentage is 0..1, where 0 corresponds to p1 and 1 corresponds to

p2.

b) Using your function interpolate (), now implement a C function (based on OpenGL.)
void morph (struct node *tree, GLfloat percentage), that displays the
graphical object given in tree! Your function shall produce a single image of the object
that corresponds to a frame that lies percentage % between pl and p2. (Your function
has to traverse all nodes of the tree data structure.) The function attrib _function allows
to set atributes like color or material properties; it shall only be called if the pointer is not
NULL.

6. Viewing
a) Explain (briefly) how the transformation from object (world) coordinates to eye (camera)

coordinates contributes to a viewing API! What are the components of a u-v-n viewing co-
ordinate system?

n VUP

b) The function gluLookAt (eyex, eyey, eyez, lookx, looky, lookz, upx, upy, upz)
internally uses a u-v-n coordinate system:

n = eye— look

cye
u = upxn !
vV = nxu

fook

gluLookAt normalizes n, u, v to unit length and uses the normalized vectors to build up
the viewing matrix:

Uy Uy Uy dy
Vg Uy U dy

Ng Ny N, dy
0 0 0 1

Show that u, v, n are mutually perpendicular (orthogonal)!

Show that the matrix V' properly converts object coordinates to eye coordinates by demon-
strating that it maps eye to the origin (0,0, 0,1)%, u to (1,0,0,0)%, v to (0,1,0,0)7, and n
to (0,0,1,0)7!

V= (dy, dy, d,) = (—eye - u, —eye - v, —eye - n)

7. Polygon Shading

a) Explain the basic idea of the Phong reflection model! Draw a simple figure that shows the
vectors involved in computing the shade of a given point on the surface of an object!

b) Explain how flat shading works, for example for a polygonal mesh! What are the advantage
and the disadvantage of flat shading?

c) Explain Phong shading and how it improves over the disadvantage of flat shading!

8. Texture

Write a program that shows a road: The road is 15 meters long and 1 meter wide. Every 3 meters,
there is a white dash painted on the asphalt. Each dash is 75 cm long and 25 cm wide. The pattern
of the road shall be determined by an 8 x 8 texture pattern that is mapped onto a quad. Start with
the following main program. The desired output of your program is shown on the right side.

int main (int argc, char** argv)

{

glutInit (&argc, argv) ;
glutInitDisplayMode (GLUT RGB | GLUT SINGLE) ;
glutInitWindowSize (500, 500);
glutCreateWindow (argvI[0]);
glClearColor(0.0,0.0,0.7,1.0);
glMatrixMode (GL_ PROJECTION) ;
glLoadIdentity () ;
gluOrtho2D(-10.0,10.0,-10.0,10.0) ;
glMatrixMode (GL MODELVIEW) ;
glLoadIdentity () ;

Init Texture() ;

glutDisplayFunc (Display) ;
glutMainLoop () ;

return 0O;

a) Define and initialize the data structure for your 8 x 8 texture!

b) Implement the function void Init _Texture (void) that does all initialization neces-
sary for the texturing!

¢) Implement the function void Display (void) that actually displays the road!

