Faculteit der Exacte Wetensch	happen
-------------------------------	--------

Tentamen Compilerbouw

Vrije Universiteit

27-04-2001

Questions can be answered in Dutch or English.

- 1. Explain the following terms:
 - a. table compression
 - **b.** top-down parser
 - c. peephole optimizer
 - **d.** relocation bits
- 2. Lexical analysis:
 - **a.** What is the dot motion rule for a lexical item of the form

$$[T \rightarrow \alpha \cdot (R)? \beta]$$
 ?

- **b.** Explain this rule.
- 3. Parsing: Construct the LR(0) automaton for the grammar

$$S \rightarrow x x S \mid a$$

where x and a are terminal symbols.

- **4.** Context handling:
 - **a.** Describe briefly the difference between simple and full symbolic interpretation.
 - **b.** Give the dataflow equations for forward and backward dataflow analysis.

5. Code generation: Given a machine with 3 machine instructions:

(1)
$$R_1 := \underline{\text{mem}} \qquad R_1 \\ \downarrow \\ \underline{\text{mem}}$$

(2)
$$R_1 := R_1 + R_2$$
 R_1 R_1 R_2 R_2

(3)
$$R_{1} := R_{1} + \underline{\text{mem}} \qquad R_{1}$$

$$R_{1} \xrightarrow{\text{mem}}$$

where mem denotes a memory location, and given the input tree

where a and b are memory locations. The instructions and the tree are presented to a bottom-up tree-rewriting code generator (BURS code generator).

- a. Show the sets the BURS code generator builds at the nodes of the imput tree, and explain why is does so.
- **b.** Show the tree or trees that result from the rewriting process.
- **6.** Memory management: Sketch a method by which the positions of pointers in the program data area can be communicated to the garbage collector.
- 7. Imperative programs: In generating the code for routine calling sequences, the compiler writer has the choice between two frequently used schemes for register saving and restoring: "caller saves" and "callee saves". Explain these schemes briefly and compare their properties.

8. In the Prolog rule

grandparent (X, Z): - parent (X, Y), parent (Y, Z).

the goal parent(X, Y) may match more than one Y. How are these multiple values transferred to the second goal parent(Y, Z)?

Assessment:

	1:	2:	3:	4:	5:	6:	7:	8:	
a:	4	5	10	7	7	8	10	8	
b:	4	7		7	5				
c:	4								
d:	4								
			4-14-						
	16	12	10	14	12	8	10	8	Total : 90