Vrije Universiteit

20-01-1999

Questions can be answered in Dutch or English.

- 1. Explain the following terms briefly:
 - a. symbol table
 - **b.** dispatch table
 - c. S-attributed grammar
 - **d.** push-down automaton
- 2. A lexical analyser is constructed to recognise two patterns \underline{a} and $\underline{a*b}$. It is given the input $\underline{aaa\$}$ in which $\underline{\$}$ signals the end of the input.

The lexical analyser will have to read to the end of the input to see that the input does not match the pattern $\underline{a}*\underline{b}$. How can it still yield the first \underline{a} of the input as the first recognised token?

3. An example of an LR(0) item is:

$$[A \rightarrow Bc \cdot De]$$

- **a.** Describe the meaning of the components.
- **b.** What additional information is kept in an LR(1) item?
- 4. Given the transition table

0	1	2	3	4	5
A					В
A					В
С				D	
	E		F		
		A			
		В			
	A	A C	A C E A	A C F A	A

- a. Show how this matrix is compressed by the row displacement method.
- b. How is element [C, 4] accessed?
- c. How is the empty element at [B, 4] accessed?

5. Consider the attribute grammar rule

$$\begin{split} N(i_1, \ i_2, \ s_{1,} \ s_2) &\to P(i_1, \ s_1, \ s_2) \quad Q(i_1, \ s_1) \\ \{ & N \cdot s_1 \colon = P \cdot s_1 \quad ; \\ & N \cdot s_2 \colon = P \cdot s_2 \quad ; \\ & P \cdot i_1 \colon = N \cdot i_1 + Q \cdot s_1 \quad ; \\ & Q \cdot i_1 \colon = N \cdot i_2 \end{split}$$

a. Draw the dependency graph for N, in the following shape:

b. Given the IS-graphs for P and Q,

and given that the IS-graph of N is still empty, show how the new update of the IS-graph of N is constructed.

6. Given a machine with 3 machine instructions:

(2)
$$R_1 := R_1 + R_2$$
 R_1

(3)
$$R_{1}:=R_{1}+\text{mem}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

where mem denotes the contents of a memory location, and given the input tree

to a bottom-up tree-rewriting code generator (BURS code generator).

- a. Show the sets the BURS code generator builds at the nodes of the imput tree, and explain why is does so.
- **b.** Show the tree or trees that result from the rewriting process.
- 7. Given the two-dimensional array

then the simplest way to calculate the address of element a[i, j] is to calculate the starting address of the i-th row and then find its j-th element. There is, however, a more efficient way. Which?

- **8.** Explain reference-count garbage collection, and discuss advantages and disadvantages.
- Pointers to objects in a parallel object oriented language are implemented as pairs of machine addresses and location addresses. When objects are allowed to migrate, this no longer works. Suggest a solution.

Assessment: