Note

- (1) This exam consists of 7 problems.
- (2) Calculators, notes, books, etc., may not be used.
- (3) Justify for your answers!
- (4) Throughout this exam, $K = \{0, 1\}$.

Problems

- (1) Suppose C is a binary code of length 14 with 16 codewords and distance d=6. How many words in K^n can be decoded under IMLD if we only decode error patterns of weight at most $t=\lfloor \frac{d-1}{2} \rfloor$? Do not simplify your answer to a number.
- (2) Let

$$H = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 1 & 1 & 0 \ 1 & 1 & 0 & 1 \ 1 & 0 & 1 & 1 \ 0 & 1 & 1 & 1 \end{array}
ight].$$

- (a) Explain why H is a check matrix of the code $C = \{w \text{ in } K^8 \text{ with } wH = 0\}.$
- (b) Determine the distance of C.
- (3) Consider all cyclic linear codes over K of length n=21.
 - (a) Show there are only two idempotents I(x) modulo $1 + x^{21}$ of degree 12.
 - (b) Determine the generating polynomial g(x) of the cyclic linear code C corresponding to the idempotent $x^3 + x^6 + x^{12}$.
 - (c) What is the *rate* of the code C in (b)?
- (4) Let $p(x) = 1 + x^3 + x^6$ be in K[x].
 - (a) Show that p(x) is irreducible in K[x]. (You may use without proof which polynomials in K[x] are irreducible for degrees 1, 2 and 3.)
 - (b) Let $GF(2^6)$ be constructed as K[x] modulo p(x), and let α be the class of x. Compute α^9 and determine if α is a primitive element of $GF(2^6)$.

In problems (5) and (6), $GF(2^4)$ is constructed as K[x] modulo $1 + x^3 + x^4$, and β is the class of x, so $1 + \beta^3 + \beta^4 = 0$. Moreover, β is primitive, and the table for its powers is:

0000	-	1110	eta^7
1000	1	0111	β^8
0100	$\mid \beta \mid$	1010	eta^9
0010	$\mid eta^2 \mid$	0101	eta^{10}
0001	β^3	1011	eta^{11}
1001	β^4	1100	eta^{12}
1101	$oxed{eta^5}$	0110	eta^{13}
1111	β^6	0011	eta^{14}

- (5) Let β and $GF(2^4)$ be as in the table. Determine the minimal polynomial in K[x] of $\alpha = 1 + \beta$.
- (6) Let β and $GF(2^4)$ be as in the table. Let C be the 2-error correcting BCH code of length 15 with parity check matrix

$$H = \left[egin{array}{ccc} 1 & 1 & 1 \ eta & eta^3 & eta^6 \ draphi & draphi & draphi \ draphi & draphi \ eta^{14} & eta^{42} \end{array}
ight] \,.$$

If w(x) is a received word, determine if $d(v, w) \leq 2$ for some v in C in two cases:

- (a) w has syndrome $wH = [s_1, s_3] = [\beta^9, \beta^7];$ (b) w has syndrome $wH = [s_1, s_3] = [\beta, \beta^3].$
- (7) Consider \mathbb{Z}_{11} .

 - (a) Determine a generator of \mathbb{Z}_{11}^{\times} . (b) Write $2^{21} + 3^{23}$ modulo 11 as $0, 1, \ldots, 10$.

	Distribution of points													
(1)) ;	5	(2)(a)	5	(3)(a)	7	(4)(a)	11	(5)	11	(6)(a)	8	(7)(a)	5
			(2)(b)	7	(3)(b)	7	(4)(b)	7			(6)(b)	8	(7)(b)	4
					(3)(c)	5								
	į	5		12		19		18		11		16		9

Maximum exam score = 90

Score for the course = (10+Exam score)/2 + (Total homework score)/3