Dept. Computer Science Operating Systems
Vrije Universiteit 28.03.2007

This exam consists of two pages

1a MINIX3 has adopted the client-server model to structure itself. Explain what this model entails,
and notably what the role of the kernel is.

Ib Drivers in MINIX3 run as ordinary user-space processes. In what sense does this impose restrictions
for communicating with hardware controllers, and how is that solved?

Ic Sketch the flow of control when a user-space process calls the library routine read(fd,buffer,bytes) in
a monolithic operating system. Hint: use a diagram.

Id In many cases, the hardware offers support for multiple rings of protection for programs. How can °

we make use of this support when organizing an operating system?

2a The semantics of the atomic swap machine instruction is defined as follows. Show how this instruc-
tion canbe used to protect a critical section.
swap(inout boolean a, inout boolean b){ temp = a; a = b; b = temp;}

2b Consider the program on page 2, which is to be executed as a separate MINIX3 user-space lock
manager process. The core of the program is formed by the functions do.down() and do_up() which
are standard operations on counting semaphores. Given lock.manager(), give a pseudo-code imple-
mentation of the function do.down(sema).

2¢ Also give a sketch of the implementation of do_up().

2d Returning SUSPEND by do_down() has the result of suspending a process. Explain which process
that is, and how this blocking is actually effectuated. .

3a Explain how MINIX3 (and many other operating systems) simulate multiple timers using a single
clock. Draw a figure to explain your answer.

3b Explain the difference between character devices and block devices, and why making this distinc-
tion can be helpful for improving I/O. Hint: think of writing a stream of bytes to disk.

4a Explain the principle working of the fork() system call.

4b Copy-on-write is a technique by which a block of memory is filled with data from a specific source
only when first written to. How can this technique help in optimizing the implementation of fork()?
Be precise!

5a Explain what the mount() system call does by means of an example. Explain your example!
5b Mount() changes fields in inodes and in-memory copies of superblocks. Explain these changes.

5c¢ Consider the following operations that are carried out on a formatted, but otherwise empty USB stick.
Explain what the result will be when listing the directory contents (by means of the last operation [s).

mount /dev/sdbl /usbstick Mount the USB stick

cd /usbstick Enter the directory

mkdir test Create a subdirectory ‘‘test.’’

touch test/x Create a file '"'x’’ in ‘'‘‘test.’’
- mount /dev/sdbl test Mount the USB stick again

ls test List the directory contents

- 5d Explain precisely what happened with the superblock table and inode table after the two mount
operations from the previous example have been carried out.

6a What is a protection domain?

Spt

Spt

Spt

Spt

Spt

Spt
Spt

Spt

Spt

Spt

Spt

Spt

Spt
5pt

Spt

Spt

Spt




6b Give a practical example of how to switch from one protection domain to another, and explain how
such a switch could be implemented by an operating system. Spt

01 PUBLIC int lock_manager () {
02 int result, s, proc_nr;
03 struct mproc *rmp;

04 while (TRUE) {

05 receive (ANY, &msg_in);

06 who = msg_in.m source; /+ who sent the message */
07 sema = msy_in.m5_11; /* which semaplore is this? */
08 call_request = msg in.m5_il; /* which operation is requested? x/
09 mp = &mproc [who] ;

10 switch(call_request) {

11 DOWN: result = do_down(sema); break;

12 UP: result = do_up(sema); break;

13 }

14

15 /+* Send the results back to the user to indicate completion. #/

16 if (result != SUSPEND) setreply(who, result); /% Prepare reply message #*/
17 /* Send out all pending reply messages, including the answer to

18 * the call Jjust made above.

19 */

21 for (proc_nr = 0, rmp = mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) {
22 if ((rmp->mp_flags & REPLY) == REPLY ){

23 send (proc_nr, &rmp->mp_reply) ;

24 rmp->mp_flags &= “REPLY;

25 }

26 }

27 }

28 return(OK) ;

29 }

Grading: The final grade is calculated by adding the scores per question (maximum: 90 points), and adding
10 bonus points. The maximum total is therefore 100 points.




