
Dept. Computer Science Operating Systems
Vrije Universiteit 28.03.2007

This exam consists of two pages

1a MINIX3 has adopted theclient-server model to structure itself. Explain what this model entails,
and notably what the role of the kernel is. 5pt

In the CS model, OS services are largely incorporated into separate processes, such as a file service,
a process server, etc., also low-level I/O drivers are run asordinary user-space processes. The role of
the kernel is mostly restricted to handling requests from applications, which are dubbed clients, to OS
services, by sending request messages and handling the reply messages. Also, in order to facilitate
direct communication with HW controllers, the kernel has a separate task that communicates with
authorized process to handle such I/O.

1b Drivers in MINIX3 run as ordinary user-space processes. In what sense does this impose restrictions
for communicating with hardware controllers, and how is that solved? 5pt

The problem is that user-space processes cannot directly send commands to controllers for doing
low-level I/O. Drivers generally need this ability. The solution in MINIX3 is to have a separate
system task that executes as a kernel-level task, and which accepts requests for low-level I/O from
device drivers. The system task will communicate with the controllers, sending the results back to
the drivers.

1c Sketch the flow of control when a user-space process calls thelibrary routineread(fd,buffer,bytes) in
a monolithic operating system. Hint: use a diagram. 5pt

In essence, you should provide the following figure:

Return to caller

4
10

6

0

9

7 8

3
2
1

11

Dispatch
Sys call

handler

Address

0xFFFFFFFF

User space

Kernel space

 (Operating system)

Library

procedure

read

User program

calling read

Trap to the kernel
Put code for read in register

Increment SP
Call read
Push fd
Push &buffer
Push nbytes

5

1d In many cases, the hardware offers support for multiple rings of protection for programs. How can
we make use of this support when organizing an operating system? 5pt

The crux here is that processors such as the Pentium offer different protection modes that allow calls
from layer k+ 1 to layer k, but not to other lower level layers. For MINIX3, wecould place user
programs in layer 3, shared libraries in layer 2, client-side system call implementations in layer 1,
and the kernel in layer 0, as shown in the following figure:

1

Kernel

0

1

2

3

Level

Typical uses of

the levels

System calls

Shared libraries

User programs

2a The semantics of theatomicswap machine instruction is defined as follows. Show how this instruc-
tion can be used to protect a critical section. 5pt

swap(inout boolean a, inout boolean b){ temp = a; a = b; b = temp;}

A more or less obvious solution is the following. Crucial to your answer is that you see thatswap
effectively does almost the same thing as theTSL instruction.

bool lock; / * shared variable, initially set to FALSE * /
void process some process() {

bool key;
while(TRUE) {

key = TRUE;
while(key == TRUE) swap(&lock, &key);
criticial section();
lock = FALSE;
non criticial section();

}
}

2b Consider the program on page 5, which is to be executed as a separate MINIX3 user-spacelock
manager process. The core of the program is formed by the functionsdo down() anddo up() which
are standard operations on counting semaphores. Givenlock manager(), give a pseudo-code imple-
mentation of the functiondo down(sema). 5pt

An important aspect is that in this case you cannot simply letthe caller block insidedo down(): you
would be blocking the lock manager. Instead, simple registration of the process needs to take place
if the value of the associated semaphore is less or equal thanzero. This leads to the following:

int do down(sema) {
if(value[sema] <= 0) {

append(queue[sema], who);
return(SUSPEND);

}else {
value[sema] = value[sema] - 1;
return(OK);

}
}

2c Also give a sketch of the implementation ofdo up(). 5pt

Crucial in this case is that you need to prepare a reply message when “unblocking” a previously
blocked process:

2

int do up(sema) {
if(length(queue[sema] > 0)) {

remove head(queue[sema], &proc);
setreply(proc, OK);

}else {
value[sema] = value[sema] + 1;

}
return(OK);

}

2d ReturningSUSPEND by do down() has the result of suspending a process. Explain which process
that is, and how this blocking is actually effectuated. 5pt

The process that initially called the system calls associated withdo down() anddo up(). In MINIX3,
these calls have been transformed into messages that are sent to the lock manager. Because message-
passing in MINIX3 is synchronous, the caller will remain blocked by the kernel until a reply is sent
back. The lock manager will do so only when thedown() operation succeeded, or later when theup()
operation lead to unblocking the previously blocked caller.

3a Explain how MINIX3 (and many other operating systems) simulate multiple timers using a single
clock. Draw a figure to explain your answer. 5pt

Your answer should more or less explain the following figure:

Current time Next signal

Clock

header

3 4 6 2 1 X

4200 3

3b Explain the difference betweencharacter devices andblock devices, and why making this distinc-
tion can be helpful for improving I/O.Hint: think of writing a stream of bytes to disk. 5pt

The difference lies in the unit of transferring data: character devices do this in terms of bytes,
whereas block devices operate on whole blocks of data. As a consequence, it is much easier to
optimize performance with block devices, as you can easily build buffer caches as in most UNIX
systems. Although this is also possible for character devices, you still need to process input on a per-
character basis (meaning that, in principle, an interrupt will have to be generated at each incoming
character. Another characteristic difference is that block devices can support anlseek operation,
which is less obvious for character devices.

4a Explain the principle working of thefork() system call. 5pt

Your answer should include mentioning thatfork() places a copy of the caller’s memory image, ef-
fectively copying the calling process to a new one. The caller is returned the child’s PID, while the
child is returned the value 0.

4b Copy-on-write is a technique by which a block of memory is filled with data from a specific source
only when first written to. How can this technique help in optimizing the implementation offork()?
Be precise! 5pt

The trick is that copy-on-write only allocates memory to thechild process, but it will not copy the
parent’s memory segments until necessary. To this end, notethat a complete map of the child memory
will have to be installed; the only thing that is not being done is the expensive copying. The technique
is useful because in many cases the child will want to executea different program than its parent,
effectively wasting a complete copy anyway.

5a Explain what themount() system call does by means of an example.Explain your example! 5pt

Mount() establishes that a complete file system as stored on, e.g., disk, becomes accessible through
another file system. Your example can be simple, but make sureyou mention the notion of mount
point and that the root of the file system is taken as mounted point.

3

5b Mount() changes fields in inodes and in-memory copies of superblocks. Explain these changes. 5pt

First, the inode that is mounted on will have a boolean set that it is now a mount point. This bit is
needed when parsing pathnames. Second, the superblock of the mounted file system will (1) have a
pointer to the mount point, and (2) a pointer to the inode of its root node.

5c Consider the following operations that are carried out on a formatted, but otherwise empty USB stick.
Explain what the result will be when listing the directory contents (by means of the last operationls). 5pt

mount /dev/sdb1 /usbstick Mount the USB stick
cd /usbstick Enter the directory
mkdir test Create a subdirectory ‘‘test.’’
touch test/x Create a file ‘‘x’’ in ‘‘test.’’
mount /dev/sdb1 test Mount the USB stick again
ls test List the directory contents

It’s not that difficult: you will see that the directory “test” is listed – the device is simply mounted
twice.

5d Explain precisely what happened with the superblock table and inode table after the two mount
operations from the previous example have been carried out. 5pt

The first mount operation creates an entry in the superblock table to which the superblock of the
USB file system will be loaded. At the same time, an inode entryin the inode table is created for the
inode of the root node of that file system. Pointers and booleans will be set as explained for question
(b). This procedure is repeatedas is, except that for the second mount we have a different inode to
consider.

6a What is a protection domain? 5pt

“A [protection] domain is a set of (object, rights) pairs. Each pair specifies an object and some
subset of the operations that can be performed on it. A right in this context means permission to
perform one of the operations.”

6b Give a practical example of how to switch from one protectiondomain to another, and explain how
such a switch could be implemented by an operating system. 5pt

When excuting thepasswd command, you may need to change the otherwise protected password
file. This can be done safely by switching to the domain of the super user. Such a switch can
be implemented by keeping track of effecitive UIDs, and letting the file server control the transition
from real UID to effective UID. When accessing files, only theeffective UID is checked when checking
authorisation.

4

01 PUBLIC int lock_manager() {
02 int result, s, proc_nr;
03 struct mproc * rmp;
04 while (TRUE) {
05 receive(ANY, &msg_in);
06 who = msg_in.m_source; / * who sent the message * /
07 sema = msg_in.m5_l1; / * which semaphore is this? * /
08 call_request = msg_in.m5_i1; / * which operation is requested? * /
09 mp = &mproc[who];
10 switch(call_request) {
11 DOWN: result = do_down(sema); break;
12 UP: result = do_up(sema); break;
13 }
14
15 / * Send the results back to the user to indicate completion. * /
16 if (result != SUSPEND) setreply(who, result); / * Prepare reply message * /
17 / * Send out all pending reply messages, including the answer to
18 * the call just made above.
19 * /
21 for (proc_nr = 0, rmp = mproc; proc_nr < NR_PROCS; proc_nr+ +, rmp++) {
22 if ((rmp->mp_flags & REPLY) == REPLY) {
23 send(proc_nr, &rmp->mp_reply);
24 rmp->mp_flags &= ˜REPLY;
25 }
26 }
27 }
28 return(OK);
29 }

Grading: The final grade is calculated by adding the scores per question (maximum: 90 points), and adding
10 bonus points. The maximum total is therefore 100 points.

5

