Exam Asymptotic Statistics

January 30, 2008

Delft Institute of Applied Mathematics Delft University of Technology

- 1. a) Give the definition of (uniform) tightness of a sequence of random variables and show that the sequence (X_n) , with X_n uniformly distributed on [n, n+1], is not uniformly tight.
 - b) Give an example of a sequence of random variables X_n such that X_n converges in distribution, but not in probability.
 - c) Let X_1, X_2, \ldots be a sequence of random variables such that for all $\epsilon > 0$,

$$\sum_{n=1}^{\infty} P(|X_n| > \epsilon) < \infty.$$

Prove that $X_n \to 0$ almost surely.

- d) Let U_1, U_2, \ldots i.i.d. random variables, uniformly distributed on [0,1]. Define $Y_n = \max_{1 \le i \le n} U_i$. Prove that $Y_n \to 1$ almost surely. **Hint:** use part c) of this exercise, with $X_n = Y_n 1$.
- 2. Let, for $n=1,2,\ldots,X_n \sim \text{Bin}(n,p_1)$ and $Y_n \sim \text{Bin}(n,p_2)$ be independent random variables. We wish to test the hypothesis $H_0: p_1=p_2=a$ for some fixed $a\epsilon(0,1)$, using the test statistic

$$C_n = \frac{(X_n - na)^2 + (Y_n - na)^2}{na(1-a)}.$$

Derive the asymptotic distribution under H_0 for C_n as $n \to \infty$.

- 3. Let X_1, X_2, \ldots be i.i.d. random variables with density $f(x) = \lambda \exp(-\lambda x), x \ge 0$, for some unknown parameter $\lambda > 0$. Let \bar{X}_n be the sample mean of the first n random variables, $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. The maximum likelihood estimator for the parameter λ , based on X_1, \ldots, X_n , is given by $\hat{\lambda}_n = 1/\bar{X}_n$. It is given that $EX_i = \lambda^{-1}$ and $VarX_i = \lambda^{-2}$.
 - a) Show that $\sqrt{n}(\hat{\lambda}_n \lambda) \rightsquigarrow N(0, \lambda^2)$.
 - b) We wish to estimate $P(X_i > 1) = e^{-\lambda}$. Inspired by a), we use the estimator $S_n = e^{-\hat{\lambda}_n}$. Show that this estimator is consistent and

$$\sqrt{n}(S_n - e^{-\lambda}) \rightsquigarrow N(0, \lambda^2 e^{-2\lambda}).$$

c) Another estimator that can be used to estimate $P(X_i > 1) = e^{-\lambda}$, is

$$T_n = \frac{1}{n} \sum_{i=1}^n 1_{\{X_i > 1\}} = \#\{i = 1, \dots, n : X_i > 1\}/n.$$

Prove that

$$\sqrt{n}(T_n - e^{-\lambda}) \rightsquigarrow N(0, e^{-\lambda}(1 - e^{-\lambda})).$$

d) Compute the Asymptotic Relative Efficiency of S_n relative to T_n and give your ideas on which estimator of the two to prefer.

- 4. Let X_1, \ldots, X_n be independent $N(\mu, 1)$ distributed random variables. Define $\hat{\theta}_n$ as the point of minimum of the function $\theta \to \sum_{i=1}^n (X_i \theta)^4$ or, equivalently, as the zero of the function $\theta \to \sum_{i=1}^n (X_i \theta)^3$.
 - a) Show that $\hat{\theta}_n \stackrel{P}{\longrightarrow} \theta_0$ for some θ_0 . Which θ_0 ?
 - b) Derive the asymptotic (normal) distribution of $\sqrt{n}(\hat{\theta}_n \theta_0)$. You may use that the fourth moment of the standard normal distribution is 15.

Consider a class of probability densities on \mathbb{R} , $\{p_{\theta}: \theta \in \Theta\}$. Fix $\theta_0 \in \Theta$. The Kullback Leibler divergence of p_{θ} and p_{θ_0} is defined by

$$M(heta) = E_{ heta_0} \log rac{p_{ heta}(X)}{p_{ heta_0}(X)}.$$

- c) Show that $M(\theta) \leq 0$ for all $\theta \epsilon \Theta$.
- 5. Let (F_n) be a sequence of monotonically increasing functions on \mathbb{R} and F a continuous, monotonically increasing function on \mathbb{R} , with $\lim_{x\to-\infty} F(x)=0$ and $\lim_{x\to\infty} F(x)=1$. Suppose that for each $x\in\mathbb{R}$, $F_n(x)\to F(x)$ as $n\to\infty$. Prove that $\sup_{x\in\mathbb{R}}|F_n(x)-F(x)|\to 0$ as $n\to\infty$.

Grading:

1a:2	1c:2	2:3	3b:2	3d:2	4b:4	5:3
1b:2	1d:3	3a:2	3c:2	4a:3	4c:2	

The final grade is computed as follows: $\frac{\text{number of points} + 4}{3.6}$. Good luck with the exam!