Tentamen Algebraïsche Specificaties

29 augustus 2005, 13.30-16.30

You have **three** hours for answering the questions below. In total, you can earn 100 points. Of these, 10 are given to you for free (do not ask me why). Good luck!

Question 1 (2 + 3 + 2 + 2 + 3 + 3 points) Let A be an arbitrary non-empty set.

(a) Consider the function

$$zip:(A^\omega\times A^\omega) o A^\omega$$

that is defined, for all $\sigma, \tau \in A^{\omega}$, by the following differential equation:

derivative	initial value
$zip(\sigma,\tau)'=zip(\tau,\sigma')$	$zip(\sigma, \tau)(0) = \sigma(0)$

Compute the stream $zip(\alpha, \beta)$, for arbitrary streams $\alpha, \beta \in A^{\omega}$.

(b) Define the function

$$even: A^{\omega} \to A^{\omega}, \quad even(\sigma) = (\sigma(0), \sigma(2), \sigma(4), \ldots)$$

by means of a differential equation. Similarly, define the function

$$odd: A^{\omega} \to A^{\omega}, \quad odd(\sigma) = (\sigma(1), \sigma(3), \sigma(5), \ldots)$$

by means of a differential equation.

(c) Consider the function

$$Zip:(A^{\omega}\times A^{\omega})\to A^{\omega}$$

that is defined, for all $\sigma, \tau \in A^{\omega}$, by the following differential equation:

derivative	initial value
$Zip(\sigma, \tau)' = Zip(\tau', \sigma')$	$Zip(\sigma,\tau)(0) = \sigma(0)$

Compute the stream $Zip(\alpha, \beta)$, for arbitrary streams $\alpha, \beta \in A^{\omega}$.

- (d) Let $R \subseteq A^{\omega} \times A^{\omega}$ be a relation on A^{ω} . When is R a bisimulation relation?
- (e) Express the function Zip, from part (c), in terms of the functions from parts (a) and (b).
- (f) Prove your statement under (e) by coinduction.

Question 2 (3 + 3 + 3 + 3 + 3 points)

Consider the set \mathbb{R}^{ω} of streams of real numbers.

- (a) Give the definition of the product $\sigma \times \sigma$ of a stream σ in \mathbb{R}^{ω} with itself.
- (b) Give a general formula for the derivative $(\sigma \times \sigma)'$ of $\sigma \times \sigma$, for an arbitrary stream $\sigma \in \mathbb{R}^{\omega}$.
- (c) Recall the following definitions:

$$X = (0, 1, 0, 0, 0, \ldots), \quad [r] = (r, 0, 0, 0, \ldots) \quad (r \in \mathbb{R})$$

Compute the first 9 elements of each of the following streams (as usual, we simply write r instead of [r]):

- (i) $X^3 \times 3 \times X^3$
- (ii) $(7+6X^4)+(3-8X^3+X^6)$
- (iii) $(2+X)^4$
- (d) Compute the stream $X^2 \times \sigma \times X^3$, for an arbitrary stream $\sigma \in \mathbb{R}^{\omega}$.
- (e) Consider a fixed but unknown stream $\sigma \in \mathbb{R}^{\omega}$. Find $\tau \in A^{\omega}$ such that the following equality holds:

$$\sigma = \sigma(0) + (\sigma(1) \times X) + \tau$$

Question 3 (5 + 5 + 5 points)

(a) Consider the following differential equation:

derivative	initial value
$\sigma' = -(X \times \sigma)$	$\sigma(0) = 3$

Compute the stream σ .

(b) Consider the following differential equation:

derivative	initial value
$\tau' = X^4 \times \tau$	au(0) = 2

Compute the stream τ .

(c) Consider the stream $\delta = \frac{2X+X^2}{1-X^3}$. Compute the derivative δ' of δ .

Question 4(3 + 3 + 4 points)

(a) What is the stream function $f: \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ that is implemented by the following stream circuit?:

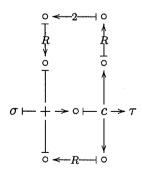
$$\sigma \vdash c \longrightarrow \circ \vdash R \longrightarrow \circ \vdash R \rightarrow \circ \vdash + \longrightarrow \tau$$

$$\circ \vdash R \longrightarrow \circ \vdash R \rightarrow \circ \vdash R \rightarrow \circ \vdash$$

- (b) Construct a circuit that implements the same stream function, using only two register gates.
- (c) Give a general description of the kind of stream functions that can be implemented by finite so-called feed-forward circuits (i.e., finite circuits without feedback loops) such as the one in part (a).

Question 5 (5 + 10 points)

(a) Compute the stream function $f: \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ that is implemented by the following circuit:



(b) Does there exist an equivalent circuit (that is, implementing the same stream function) with two registers? If so, show one. If not, explain why not.

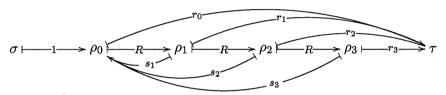
Question 6 (4 + 6 points)

Consider the set \mathbb{R}^{ω} of streams of real numbers.

- (a) Compute the stream $zip(\frac{1}{1-X^2}, \frac{2}{1-X})$.
- (b) Prove that the stream in part (a) is rational.

Question 7 (5 + 5 points)

(a) Consider the following circuit (where we use the convention of not drawing copiers and adders explicitly):



What is the stream function $f: \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ that is implemented by this circuit, for the case that

$$r_0 = r_1 = 1$$
, $r_2 = r_3 = 0$, $s_1 = s_3 = 0$, $s_2 = 1$

(b) Consider all possible circuits that are equivalent to the one of part (a) (that is, implementing the same stream function). How many registers do such circuits contain at least? Explain.